3.已知等比數(shù)列{an}的公比為-.則等于 查看更多

 

題目列表(包括答案和解析)

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于(  )
A、1
B、-
1
2
C、-1或
1
2
D、1或-
1
2

查看答案和解析>>

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于( 。
A.1B.-
1
2
C.-1或
1
2
D.1或-
1
2

查看答案和解析>>

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于( 。

 

A.

1

B.

C.

﹣1或

D.

1或﹣

查看答案和解析>>

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于( )
A.1
B.-
C.-1或
D.1或-

查看答案和解析>>

已知等比數(shù)列{an}的公比為q(q為實(shí)數(shù)),前n項(xiàng)和為Sn,且S3、S9、S6成等差數(shù)列,則q3等于( )
A.1
B.-
C.-1或
D.1或-

查看答案和解析>>

一、選擇題:

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

A

B

C

B

C

D

D

D

C

B

B(文、理)

二、填空題:

13.-1        14.y2=4x(x>0,y>0)       15.      16.    16.(文)

三、解答題:(理科)

17.解:(1)由已知1-(2cos2A-1)=2cos2

     ∴2cos2A+cosA-1=0     cosA=或cosA=-1(舍去)

∴A=60°

(2)S=bcsin60°=bc

由余弦定理cos60°=

∴b2+c2=bc+36

由b2+c2≥2bc    ∴bc≤36

∴S==9,此時(shí)b=c故△ABC為等邊三角形

  18.解:(1)設(shè)A(-,0),B(0,b)

      ∴  又=(2,2)

      ∴解得

(2)由x+2>x2-x-6 得-2<x<4

  ,由于x+2>0

  ∴由均值不等式得原式最小值為-3,僅當(dāng)x=-1時(shí)

19.解:(1)證明:連AC交BD于O,連EO

    ∵E、O分別是中點(diǎn),

EO∥PA

∴ EO面EDB  PA∥面EDB

   PA面EDB

(2) ∵△PDC為正△

∴DE⊥PC

 面PDC⊥面ABCD

 BC⊥CD       BC⊥DE

   BC面ABCD

EDB⊥面PBC

  DE面DBE

20.解:(1)x2-4ax+a2≥a在x∈[-1,+∞)恒成立

∴x2-4ax+a2-a≥0

∴△≤0或

-≤a≤0或a≤

(2)g(x)=2x3+3ax2-12a2x+3a2

   g′(x)=6x2+6ax-12a2

         =6(x-a)(x+2a)

①當(dāng)a=0時(shí),g′(x) ≥0,g(x)無極值

②當(dāng)a>0時(shí),g(x)在x=a時(shí)取得極小值,∴0<a<1

③當(dāng)a<0時(shí),g(x)在x=-2a時(shí)取到極小值,∴0<-2a<1  ∴-<a<0

故0<a<1或-<a<0

        • <rt id="gqmum"><del id="gqmum"></del></rt>

            ①-②得3tan-(2t+3)an-1=0

            ∴,又

            ∴{an}是以1為首項(xiàng),為公比的等比數(shù)列

            (2)f(t)=

            ∴bn=

            ∴{bn}是以1為首項(xiàng),為公差的等差數(shù)列

            ∴bn=1+

            (3)原式=b2(b1-b3)+b4(b3-b5)+…b2n(b2n-1+b2n+1)

                   =-(b2+b4+…b2n)

                   =-

          22.解(1)由題意M到(0,)距離與它到y(tǒng)=-距離相等

          ∴動(dòng)點(diǎn)M軌跡為拋物線,且P=

          ∴y=x2(x>0)

          (2)設(shè)M(x1,x12),N(x2,x22)(x1>0,x2>0,x1≠x2)

            ∴tanθ1=x1,tanθ2=x2(0<θ1, θ2<)

          ①當(dāng)θ≠時(shí),

          直線MN方程:y-x12=(x-x1),其中tanθ=

          :y=(x1+x2)(x+)-1,所以直線過定點(diǎn)(-

          ②當(dāng)θ=時(shí),即x1x2=1時(shí),:y=(x1+x2)x-1,過定點(diǎn)(0,-1)

          文科:17-19同理

          20.(文)(1)x2-4ax+a2≥x解為R

            ∵x2-(4a+1)x+a2≥0

            ∴△=(4a+1)2-4a2≤0

            ∴-

            ∴a的最大值為-

          (2)g(x)=2x3+3ax2-12a2x+3a2

             g′(x)=6x2+6ax-12a2

                   =6(x-a)(x+2a)

          當(dāng)a<0時(shí),g(x)在x=-2a時(shí)取到極小值,∴0<-2a<1  ∴-<a<0

          21.同理21(1)(2)

          22.同理

           


          同步練習(xí)冊答案
          <rt id="gqmum"><tr id="gqmum"></tr></rt><input id="gqmum"><delect id="gqmum"></delect></input>