題目列表(包括答案和解析)
用表示不大于的最大整數(shù).令集合,對任意和,定義,集合,并將集合中的元素按照從小到大的順序排列,記為數(shù)列.
(Ⅰ)求的值;
(Ⅱ)求的值;
(Ⅲ)求證:在數(shù)列中,不大于的項(xiàng)共有項(xiàng).
()求函數(shù)的定義域(要求用區(qū)間表示)。
6
|
[ |
2 |
3 |
1 |
3 |
()(本小題滿分12分)貴陽六中織高二年級4個班的學(xué)生到益佰制藥廠、貴陽鋼廠、貴陽輪胎廠進(jìn)行社會實(shí)踐,規(guī)定每個班只能在這3個廠中任選擇一個,假設(shè)每個班選擇每個廠的概率是等可能的。(Ⅰ)求3個廠都有班級選擇的概率;(Ⅱ)用表示有班級選擇的廠的個數(shù),求隨機(jī)變量的概率分布及數(shù)學(xué)期望。
一、選擇題:(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
D
A
A
B
二、填空題:(每小題4分,共24分)
11.; 12.; 13.; 14.; 15.4 16.120
三、解答題:(共76分,以下各題為累計得分,其他解法請相應(yīng)給分)
17.解:(I)
由,得。
又當(dāng)時,得
(Ⅱ)當(dāng)
即時函數(shù)遞增。
故的單調(diào)增區(qū)間為,
又由,得,
由
解得
故使成立的的集合是
18.解:(I)設(shè)袋中有白球個,由題意得,
即
解得或(舍),故有白球6個
(法二,設(shè)黑球有個,則全是黑球的概率為 由
即,解得或(舍),故有黑球4個,白球6個
(Ⅱ),
0
1
2
3
P
故分布列為
數(shù)學(xué)期望
19.解:(I)取AB的中點(diǎn)O,連接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又,面ABC
又PO面PAB,面PAB面ABC
(Ⅱ)以O(shè)為坐標(biāo)原點(diǎn), 分別以O(shè)B,OC,OP為軸,軸,軸建立坐標(biāo)系,
如圖,則A
設(shè)平面PAC的一個法向量為。
得
令,則
設(shè)直線PB與平面PAC所成角為
于是
20.解:(I)由題意設(shè)C的方程為由,得。
設(shè)直線的方程為,由
②代入①化簡整理得
因直線與拋物線C相交于不同的兩點(diǎn),
故
即,解得又時僅交一點(diǎn),
(Ⅱ)設(shè),由由(I)知
21.解:(I)當(dāng)時,
設(shè)曲線與在公共點(diǎn)()處的切線相同,則有
即 解得或(舍)
又故得公共點(diǎn)為,
切線方程為 ,即
(Ⅱ),設(shè)在()處切線相同,
故有
即
由①,得(舍)
于是
令,則
于是當(dāng)即時,,故在上遞增。
當(dāng),即時,,故在上遞減
在處取最大值。
當(dāng)時,b取得最大值
22.解:(I)的對稱軸為,又當(dāng)時,,
故在[0,1]上是增函數(shù)
即
(Ⅱ)
由
得
①―②得 即
當(dāng)時,,當(dāng)時,
于是
設(shè)存在正整數(shù),使對,恒成立。
當(dāng)時,,即
當(dāng)時,
。
當(dāng)時,,當(dāng)時,,當(dāng)時,
存在正整數(shù)或8,對于任意正整數(shù)都有成立。
www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com