題目列表(包括答案和解析)
已知向量,則的面積等于
A.1 B.
C.7 D.
在中,已知向量,則的面積等于( )
A. | B. | C. | D. |
A. | B. | C. | D. |
a |
b |
a |
b |
a |
b |
A.
| B.7 |
下列人類所需的營養(yǎng)物質(zhì)中,既不參與構(gòu)成人體細胞,也不為人體提供能量的是,答案:0,選項:維生素,選項:水,選項:無機鹽,... - 初中生物 - 精英家教網(wǎng)
.artpreview dt{background:#fff;color:#000}#cont{background:#fff url(http://img.jyeoo.net/images/body_bg.jpg) repeat-x;margin:0}
function initJavaScriptCallback() { QuesCart.init("bio", true); }
var imageRootUrl="http://img.jyeoo.net/",wwwRootUrl="http://www.jyeoo.com/",blogRootUrl="http://blog.jyeoo.com/",spaceRootUrl="http://space.jyeoo.com/",loginUrl="http://www.jyeoo.com/",logoutUrl="http://www.jyeoo.com/account/logoff",scriptsUrl="http://img.jyeoo.net/scripts/",isMobile=false;var mustyleAttr={color:"#000000",fontsize:"13px",fontfamily:"arial",displaystyle:"true"};document.domain="jyeoo.com";$.ajaxSetup({cache:true});C.-
| D.-
|
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
b |
a |
initJavaScript();
充值|設為首頁|免費注冊|登錄
在線問答在線組卷在線訓練 精英家教網(wǎng) 更多試題 》試題下列人類所需的營養(yǎng)物質(zhì)中,既不參與構(gòu)成人體細胞,也不為人體提供能量的是( 。
故選:A點評:解答此題的關鍵是熟練掌握人體需要的營養(yǎng)物質(zhì)及其作用.答題:xushifeng老師 隱藏解析在線訓練 |
如圖,已知向量,可構(gòu)成空間向量的一個基底,若
,在向量已有的運算法則的基礎上,新定義一種運算,顯然的結(jié)果仍為一向量,記作.
求證:向量為平面的法向量;
求證:以為邊的平行四邊形的面積等于;
將四邊形按向量平移,得到一個平行六面體,試判斷平行六面體的體積與的大小.
一、選擇題:(每小題5分,共50分)
題號
1
2
3
4
5
6
7
8
9
10
答案
B
D
B
A
C
C
D
A
A
B
二、填空題:(每小題4分,共24分)
11.; 12.; 13.; 14.; 15.4 16.120
三、解答題:(共76分,以下各題為累計得分,其他解法請相應給分)
17.解:(I)
由,得。
又當時,得
(Ⅱ)當
即時函數(shù)遞增。
故的單調(diào)增區(qū)間為,
又由,得,
由
解得
故使成立的的集合是
18.解:(I)設袋中有白球個,由題意得,
即
解得或(舍),故有白球6個
(法二,設黑球有個,則全是黑球的概率為 由
即,解得或(舍),故有黑球4個,白球6個
(Ⅱ),
0
1
2
3
P
故分布列為
數(shù)學期望
19.解:(I)取AB的中點O,連接OP,OC PA=PB POAB
又在中,,
在中,,又,故有
又,面ABC
又PO面PAB,面PAB面ABC
(Ⅱ)以O為坐標原點, 分別以OB,OC,OP為軸,軸,軸建立坐標系,
如圖,則A
設平面PAC的一個法向量為。
得
令,則
設直線PB與平面PAC所成角為
于是
20.解:(I)由題意設C的方程為由,得。
設直線的方程為,由
②代入①化簡整理得
因直線與拋物線C相交于不同的兩點,
故
即,解得又時僅交一點,
(Ⅱ)設,由由(I)知
21.解:(I)當時,
設曲線與在公共點()處的切線相同,則有
即 解得或(舍)
又故得公共點為,
切線方程為 ,即
(Ⅱ),設在()處切線相同,
故有
即
由①,得(舍)
于是
令,則
于是當即時,,故在上遞增。
當,即時,,故在上遞減
在處取最大值。
當時,b取得最大值
22.解:(I)的對稱軸為,又當時,,
故在[0,1]上是增函數(shù)
即
(Ⅱ)
由
得
①―②得 即
當時,,當時,
于是
設存在正整數(shù),使對,恒成立。
當時,,即
當時,
。
當時,,當時,,當時,
存在正整數(shù)或8,對于任意正整數(shù)都有成立。
www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com