于P.與交于N.Q兩點.直線AB交PQ于M.若MN =2.PQ=12.則PM= . 查看更多

 

題目列表(包括答案和解析)

直線AB過拋物線x2=2py(p>0)的焦點F,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準(zhǔn)線與y軸的交點,O是坐標(biāo)原點.
(Ⅰ)求
MA
MB
的取值范圍;
(Ⅱ)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,求證:
MN
OF
=0,
NQ
OF
;
(Ⅲ)若p是不為1的正整數(shù),當(dāng)
MA
MB
=4P2,△ABN的面積的取值范圍為[5
5
,20
5
]時,求該拋物線的方程.

查看答案和解析>>

直線AB過拋物線x2=2py(p>0)的焦點9,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準(zhǔn)線與y軸的交點,O是坐標(biāo)原點.

(1)求證的取值范圍;

(2)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,

求證:

(3)設(shè)直線AB與x軸、y軸的兩個交點分別為K和L,當(dāng)=4p2,△ABN的面積的取值范圍限定為[]時,求動線段KL的軌跡所形成的平面區(qū)域的面積.

查看答案和解析>>

直線AB過拋物線x2=2py(p>0)的焦點F,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準(zhǔn)線與y軸的交點,O是坐標(biāo)原點.

(1)求的取值范圍;

(2)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,求證=0, .

查看答案和解析>>

直線AB過拋物線x2=2py(p>0)的焦點F,并與其相交于A、B兩點,Q是線段AB的中點,M是拋物線的準(zhǔn)線與y軸的交點,O是坐標(biāo)原點.
(Ⅰ)求的取值范圍;
(Ⅱ)過A、B兩點分別作此拋物線的切線,兩切線相交于N點,求證:=0,
(Ⅲ)若p是不為1的正整數(shù),當(dāng)=4P2,△ABN的面積的取值范圍為[5,20]時,求該拋物線的方程.

查看答案和解析>>

直線AB過拋物線x2=2py(p0)的焦點F,并與其相交于A、B兩點.Q是線段AB的中點,M是拋物線的準(zhǔn)線與y軸的交點.O是坐標(biāo)原點.

(Ⅰ)求的取值范圍;

(Ⅱ)過A、B兩點分剮作此撒物線的切線,兩切線相交于N點.求證:;

(Ⅲ)若P是不為1的正整數(shù),當(dāng),△ABN的面積的取值范圍為時,求該拋物線的方程.

查看答案和解析>>

一、選擇題:(每小題5分,共50分)

題號

1

2

3

4

5

6

7

8

9

10

答案

B

D

B

A

C

C

C

A

A

B

二、填空題:(每小題4分,共24分)

11.     12.4       13.      14.     15.4   16.

三、解答題:(共76分,以下各題為累計得分,其他解答請相應(yīng)給分)

17.解:(I)

          

        由,得。

        又當(dāng),得

       

       (Ⅱ)當(dāng)

        即時函數(shù)遞增。

        故的單調(diào)增區(qū)間為,

18.解:(I)各取1個球的結(jié)果有(紅,紅1)(紅,紅2)(紅,白1)(紅,白2)(紅,黑)

(白,紅2)(白,紅2)(白,白1)(白,白2)(白,黑)(白,紅1)(白,紅2

(白,白1)(白,白2)(白,黑)(黑1,紅1)(黑1,紅2)(黑1,白1)(黑1,白2)(黑1,黑)(黑2,紅1)(黑2,紅2)(黑2,白1)(黑2,白2)(黑2,黑)(黑3,紅1

(黑3,紅2)(黑3,白1)(黑3,白2)(黑3,黑)

等30種情況

其中恰有1白1黑有(白,黑)…(黑3,白2)8種情況,

故1白1黑的概率為

   (Ⅱ)2紅有2種,2白有4種,2黑有3種,

故兩球顏色相同的概率為

   (Ⅲ)1紅有1×3+2×5=13(種),2紅有2種,

故至少有1個紅球的概率為

19.解:(I)側(cè)視圖   (高4,底2

       

   (Ⅱ)證明,由面ABC得AC,又由俯視圖知ABAC,,

面PAB

又AC面PAC,面PAC面PAB

   (Ⅲ)面ABC,為直線PC與底面ABC所成的角

中,PA=4,AC=,,

20.解:(I)由題意設(shè)C的方程為,得。

   

    設(shè)直線的方程為,由

    ②代入①化簡整理得  

    因直線與拋物線C相交于不同的兩點,

    故

    即,解得時僅交一點,

   (Ⅱ)設(shè),由由(I)知

   

   

   

21.解:(I)   由

于是

切線方程為,即

   (Ⅱ)令,解得

    ①當(dāng)時,即時,在內(nèi),,于是在[1,4]內(nèi)為增函數(shù)。從而

    ②當(dāng),即,在內(nèi),,于是在[1,4]內(nèi)為減函數(shù),從而

    ③當(dāng)時,內(nèi)遞減,在內(nèi)遞增,故在[1,4]上的最大值為的較大者。

    由,得,故當(dāng)時,

    當(dāng)時,

22.解:(I)設(shè)的首項為,公差為d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        當(dāng)時,,當(dāng)時,

       

        于是

        設(shè)存在正整數(shù),使對恒成立

        當(dāng)時,,即

        當(dāng)時,

       

        當(dāng)時,當(dāng)時,,當(dāng)時,

        存在正整數(shù)或8,對于任意正整數(shù)都有成立。

www.ks5u.com

 

 


同步練習(xí)冊答案