題目列表(包括答案和解析)
(本小題滿分12分)二次函數的圖象經過三點.
(1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值
(本小題滿分12分)已知等比數列{an}中,
(Ⅰ)求數列{an}的通項公式an;
(Ⅱ)設數列{an}的前n項和為Sn,證明:;
(Ⅲ)設,證明:對任意的正整數n、m,均有(本小題滿分12分)已知函數,其中a為常數.
(Ⅰ)若當恒成立,求a的取值范圍;
(Ⅱ)求的單調區(qū)間.(本小題滿分12分)
甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(Ⅰ)求甲至多命中2個且乙至少命中2個的概率;
(Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.
(1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m
(2)當時,求弦長|AB|的取值范圍.
一、選擇題(本大題共8小題,每小題5分,共40分)
1.B 2. D 3.B 4.B 5.A 6.A 7.C 8. A.
二、填空題(本大題共6小題,每小題5分,共30分)
9. 10. 4 11. (2分),(3分)
12. 13. 14. 15.
三、解答題(本大題共6小題,共80分)
16.(本題滿分10分)
解:(1)由向量共線有:
即, 4分
又,所以,
則=,即 6分
(2)由余弦定理得
則,
所以當且僅當時等號成立 10分
所以. 12分
17.(本小題滿分12分)
解:(1)由已知條件得
2分
即,則 6分
答:的值為.
(2)解:可能的取值為0,1,2,3 5分
6分
7分
8分
的分布列為:
0
1
2
3
10分
所以 12分
答:數學期望為.
18.(本小題滿分14分)
解:(1) 在△PAC中,∵PA=3,AC=4,PC=5,
∴,∴;……1分
又AB=4,PB=5,∴在△PAB中,
同理可得 …………………………2分
∵,∴……3分
∵平面ABC,∴PA⊥BC. …………4分
(2) 如圖所示取PC的中點G,…………………5分
連結AG,BG,∵PF:FC=3:1,∴F為GC的中點
又D、E分別為BC、AC的中點,
∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F,……………7分
∴面ABG∥面DEF.
即PC上的中點G為所求的點. …………… 9分
(3)由(2)知G這PC的中點,連結GE,∴GE⊥平面ABC,過E作EH⊥AB于H,連結GH,則GH⊥AB,∴∠EHG為二面角G-AB-C的平面角. …………… 11分
∵ 又
∴ 又 …………… 13分
∴
∴二面角G-AB-C的平面角的正切值為. …………… 14分
19.(本小題滿分14分)
① 當時,在上單調遞減,,(舍去),所以,此時無最小值. ……10分
③ 當時,在上單調遞減,,(舍去),所以,此時無最小值.綜上,存在實數,使得當時有最小值3.……14分
20.解(1)∵過(0,0)
則
|