(2)設(shè)是兩個(gè)實(shí)數(shù).滿(mǎn)足.且.若.求證:函數(shù)在區(qū)間上的單調(diào)增區(qū)間的長(zhǎng)度之和為(閉區(qū)間的長(zhǎng)度定義為) 查看更多

 

題目列表(包括答案和解析)

已知向量
p
=(x,a-3),
q
=(x,x+a),f(x)=
p
q

(Ⅰ)若方程f(x)=0在區(qū)間(1,+∞)上有兩實(shí)根,求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)實(shí)數(shù)m、n、r滿(mǎn)足:m、n、r中的某一個(gè)數(shù)恰好等于a,且另兩個(gè)恰為方程f(x)=0的兩實(shí)根,判斷①m+n+r,②m2+n2+r2,③m3+n3+r3是否為定值?若是定值請(qǐng)求出;若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求g(a)的最小值;
(Ⅲ)給定函數(shù)h(x)=bx+1(b>0),若對(duì)任意的x0∈[2,3],總存在x1∈[1,2],使得g(x0)=h(x1),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

已知函數(shù)f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2為常數(shù))
函數(shù)f(x)定義為對(duì)每個(gè)給定的實(shí)數(shù)x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)當(dāng)p1=2時(shí),求證:y=f1(x)圖象關(guān)于x=2對(duì)稱(chēng);
(2)求f(x)=f1(x)對(duì)所有實(shí)數(shù)x(x≠p1)均成立的條件(用p1、p2表示);
(3)設(shè)a,b是兩個(gè)實(shí)數(shù),滿(mǎn)足a<b,且p1,p2∈(a,b),若f(a)=f(b)求證:函數(shù)f(x)在區(qū)間[a,b]上單調(diào)增區(qū)間的長(zhǎng)度之和為
b-a
2
.(區(qū)間[m,n]、(m,n)或(m,n]的長(zhǎng)度均定義為n-m)

查看答案和解析>>

已知函數(shù)f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2為常數(shù))
函數(shù)f(x)定義為對(duì)每個(gè)給定的實(shí)數(shù)x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)當(dāng)p1=2時(shí),求證:y=f1(x)圖象關(guān)于x=2對(duì)稱(chēng);
(2)求f(x)=f1(x)對(duì)所有實(shí)數(shù)x(x≠p1)均成立的條件(用p1、p2表示);
(3)設(shè)a,b是兩個(gè)實(shí)數(shù),滿(mǎn)足a<b,且p1,p2∈(a,b),若f(a)=f(b)求證:函數(shù)f(x)在區(qū)間[a,b]上單調(diào)增區(qū)間的長(zhǎng)度之和為
b-a
2
.(區(qū)間[m,n]、(m,n)或(m,n]的長(zhǎng)度均定義為n-m)

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)數(shù)學(xué)公式時(shí),f(x)取得極小值數(shù)學(xué)公式
(1)求a,b的值;
(2)設(shè)直線(xiàn)l:y=g(x),曲線(xiàn)S:y=F(x).若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:
①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.
試證明:直線(xiàn)l:y=x+2是曲線(xiàn)S:y=ax+bsinx的“上夾線(xiàn)”.
(3)記數(shù)學(xué)公式,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知函數(shù)f(x)=ax+bsinx,當(dāng)時(shí),f(x)取得極小值
(1)求a,b的值;
(2)設(shè)直線(xiàn)l:y=g(x),曲線(xiàn)S:y=F(x).若直線(xiàn)l與曲線(xiàn)S同時(shí)滿(mǎn)足下列兩個(gè)條件:
①直線(xiàn)l與曲線(xiàn)S相切且至少有兩個(gè)切點(diǎn);
②對(duì)任意x∈R都有g(shù)(x)≥F(x).則稱(chēng)直線(xiàn)l為曲線(xiàn)S的“上夾線(xiàn)”.
試證明:直線(xiàn)l:y=x+2是曲線(xiàn)S:y=ax+bsinx的“上夾線(xiàn)”.
(3)記,設(shè)x1是方程h(x)-x=0的實(shí)數(shù)根,若對(duì)于h(x)定義域中任意的x2、x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),問(wèn)是否存在一個(gè)最小的正整數(shù)M,使得|h(x3)-h(x2)|≤M恒成立,若存在請(qǐng)求出M的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案