設(shè)事件M=則事件M構(gòu)成的區(qū)域如下圖中的陰影部分: 查看更多

 

題目列表(包括答案和解析)

設(shè)V是全體平面向量構(gòu)成的集合,若映射f:V→R滿足:對(duì)任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)則稱映射f具有性質(zhì)P.先給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號(hào)為
 
.(寫(xiě)出所有具有性質(zhì)P的映射的序號(hào))

查看答案和解析>>

設(shè)V是全體平面向量構(gòu)成的集合.若映射f:V→R滿足:對(duì)任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b),則稱映射f具有性質(zhì)P.現(xiàn)給出如下映射:
①f1:V→R,f1(m)=x+y+1,m=(x,y)∈V;
②f2:V→R,f2(m)=x-y,m=(x,y)∈V;
③f3:V→R,f3(m)=x2+y,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號(hào)為
(2)
(2)
.(寫(xiě)出所有具有性質(zhì)P的映射的序號(hào))

查看答案和解析>>

設(shè)V是全體平面向量構(gòu)成的集合,若映射f:V→R滿足:對(duì)任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)則稱映射f具有性質(zhì)P.先給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號(hào)為    .(寫(xiě)出所有具有性質(zhì)P的映射的序號(hào))

查看答案和解析>>

設(shè)V是全體平面向量構(gòu)成的集合,若映射f:V→R滿足:對(duì)任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)則稱映射f具有性質(zhì)P.先給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號(hào)為    .(寫(xiě)出所有具有性質(zhì)P的映射的序號(hào))

查看答案和解析>>

設(shè)V是全體平面向量構(gòu)成的集合,若映射f:V→R滿足:對(duì)任意向量a=(x1,y1)∈V,b=(x2,y2)∈V,以及任意λ∈R,均有f(λa+(1-λ)b)=λf(a)+(1-λ)f(b)則稱映射f具有性質(zhì)P.先給出如下映射:
①f1:V→R,f1(m)=x-y,m=(x,y)∈V;
②f2:V→R,f2(m)=x2+y,m=(x,y)∈V;
③f3:V→R,f3(m)=x+y+1,m=(x,y)∈V.
其中,具有性質(zhì)P的映射的序號(hào)為_(kāi)_____.(寫(xiě)出所有具有性質(zhì)P的映射的序號(hào))

查看答案和解析>>


同步練習(xí)冊(cè)答案