(Ⅰ)求需緊急維修的提升站數(shù)的分布列, 查看更多

 

題目列表(包括答案和解析)

某港口各泊位每天的水深(水面與洋底的距離)f(x)(單位:米)與時間x(單位:小時)的函數(shù)關(guān)系近似地滿足f(x)=Asin(
π6
x+φ)+B(A,B>0,0≤φ<2π).在通常情況下,港口各泊位能正常進行額定噸位的貨船的裝卸貨任務,而當貨船的噸位超過泊位的額定噸位時,貨船需在漲潮時駛?cè)牒降,靠近碼頭卸貨,在落潮時返回海洋.該港口某五萬噸級泊位接到一艘七萬噸貨船卸貨的緊急任務,貨船將于凌晨0點在該泊位開始卸貨.已知該泊位當天的最低水深12米,最大水深20米,并在凌晨3點達到最大水深.
(1)求該泊位當天的水深f(x)的解析式;
(2)已知該貨船的吃水深度(船底與水面的距離)為12.5米,安全條例規(guī)定,當船底與洋底距離不足1.5米時,貨船必須停止卸貨,并將船駛向較深的水域.據(jù)測算,一個裝卸小隊可使貨船吃水深度以每小時0.1米的速度減少.
(Ⅰ)如果只安排一裝卸小隊進行卸貨,那么該船在什么時間必須停止卸貨,并將船駛向較深的水域(精確到小時)?
(Ⅱ)如果安排三個這樣的裝卸小隊同時執(zhí)行該貨船的卸貨任務,問能否連續(xù)不間斷的完成卸貨任務?說明你的理由.

查看答案和解析>>

有一種舞臺燈,外形是正六棱柱ABCDEF-A1B1C1D1E1F1,在其每一個側(cè)面上(不在棱上)安裝5只顏色各異的彩燈,上下底面不安裝彩燈,假若每只燈正常發(fā)光的概率是0.5,若一個面上至少有3只燈發(fā)光,則不需要維修,否則需要更換這個面.假定更換一個面需100元,用ξ表示維修一次的費用.
(1)求側(cè)面ABB1A1需要維修的概率;
(2)寫出ξ的分布列,并求ξ的數(shù)學期望.

查看答案和解析>>

有一種舞臺燈,外形是正六棱柱ABCDEFA1B1C1D1E1F1,在其每一個側(cè)面上(不在棱上)安裝5只顏色各異的彩燈,假若每只燈正常發(fā)光的概率是0.5,若一個面上至少有3只燈發(fā)光,則不需要維修,否則需要更換這個面. 假定更換一個面需100元,用ξ表示維修一次的費用.

   (1)求面ABB1A1需要維修的概率;

   (2)寫出ξ的分布列,并求ξ的數(shù)學期望.

查看答案和解析>>

有一種舞臺燈,外形是正六棱柱ABCDEFA1B1C1D1E1F1,在其每一個側(cè)面上(不在棱上)安裝5只顏色各異的彩燈,假若每只燈正常發(fā)光的概率是0.5,若一個面上至少有3只燈發(fā)光,則不需要維修,否則需要更換這個面. 假定更換一個面需100元,用ξ表示維修一次的費用.

   (1)求面ABB1A1需要維修的概率;

   (2)寫出ξ的分布列,并求ξ的數(shù)學期望.

查看答案和解析>>

有一種舞臺燈,外形是正六棱柱ABCDEF-A1B1C1D1E1F1,在其每一個側(cè)面上(不在棱上)安裝5只顏色各異的彩燈,上下底面不安裝彩燈,假若每只燈正常發(fā)光的概率是0.5,若一個面上至少有3只燈發(fā)光,則不需要維修,否則需要更換這個面.假定更換一個面需100元,用ξ表示維修一次的費用.
(1)求側(cè)面ABB1A1需要維修的概率;
(2)寫出ξ的分布列,并求ξ的數(shù)學期望.

查看答案和解析>>

考 生 填 寫 座 位

號 碼 的 末 兩 位

題 號

17

18

19

20

21

22

23

 

 

得 分

 

 

 

 

 

 

 

 

 

一.選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個選項中,只有一項是符合題目要求的;每小題選出答案后,請用2B鉛筆把機讀卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案標號.)

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

C

B

C

A

B

A

C

D

D

C

D

 

得分

評卷人

 

 

二.填空題(請把答案填在對應題號的橫線上)

13..    14..

15..    16. (或) .

 

 

三.解答題(本大題共5小題,共64分.解答應寫出文字說明、證明過程或演算步驟.請將答題的過程寫在答題卷中指定的位置.)

17.( 本題滿分12分)

解:(Ⅰ)由遞推關(guān)系(2分)得,(3分);;(6分),

(Ⅱ)由,即(7分),所以;.........12分(不單列扣1分)

 

 

 

 

 

18.(本題滿分12分)

證明:(Ⅰ) 在三棱柱中,

    ∵側(cè)棱垂直底面

∴ 四邊形,都是矩形,

又 ∵ ,,,

,又 ∵ 中點,

中,,同理,

     ∴ ,∴ ,.....4分

     在中,,

     在中,,

,∴ .....6分

,

∴ ...........8分

(Ⅱ)由(Ⅰ)知

∴ 直線與平面所成的角為...........9分

中,

,...............11分

即 直線與平面所成的角的余弦值為........12分

解法二:(Ⅰ)以為原點,建立如圖所示的空間直角坐標系,設,,(3分),則 ,,  ∴ ,

,∴(5分),

,

,∴(7分)

,∴ .....8分

(Ⅱ)設向量的夾角為,

....10分

設直線與平面所成的角為

平面

∴直線與平面所成角的余弦值為.…………………………12分

19.(本題滿分12分)

解:(Ⅰ)每個提升站需要緊急維修的概率為(2分),不需要緊急維修的概率為(3分),設需要維修的提升站數(shù)為,則

, (4分)

, (5分)

, (6分)

.(7分)

(Ⅱ)∵,∴ 的取值是,則(元)的分布列是:

..................(9分)

,∴,又 ,

∴ 

(或

答:緊急維修費用的數(shù)學期望是750元...........12分

20.(本題滿分14分)

解: (Ⅰ)設“封閉函數(shù) ” 的“封閉區(qū)間”為 ,其中

 上為減函數(shù),故有:,

解得:,,

的“封閉區(qū)間”為..........4分

(Ⅱ),令,得:....6分

在(,0)上是增函數(shù),在(2 ,+)上也是增函數(shù);在(0 ,2)上是減函數(shù).

顯然上不是單調(diào)函數(shù),故不是上的“封閉函數(shù) ”....8分

(Ⅲ)假設存在實數(shù),使函數(shù)上的“封閉函數(shù) ”且“封閉區(qū)間”是,則

(1)    函數(shù)上是單調(diào)函數(shù).

,若函數(shù)上是增函數(shù),則恒成立,則:;解得:....10分

(2)    由,知,故函數(shù)上是增函數(shù),所以, 函數(shù)在區(qū)間 上是增函數(shù),故有:

,∵,∴,從而方程至少有兩個不相等的實數(shù)根.

又方程有一根為,故:方程至少有一個不為的根.

,解得:0..........13分

由(1),(2)知:3...........14分

21.(本題滿分14分)

解:(Ⅰ)∵離心率,且短半軸長,

,∴,

     ∴ 橢圓的方程為..............5分

(Ⅱ)設,則,則(6分),則直線的方程為,聯(lián)立,得

(8分),

(或?qū)懗桑?sub>(8分),

(或,即 (8分)

 ∵ ,∴

解之:(10分),

(11分),

(或,(11分),)

又 ∵、三點共線,∴ (12分),而

,..............13分

(或(13分),解之:......14分)

,∴ ,解之: .........14分.

四.選考題(從下列三道解答題中任選一道作答,作答時,請注明題號;若多做,則按首做題計入總分,滿分10分; 請將答題的過程寫在答題卷中指定的位置)

 

你選做_______題(請在橫線上注明題號)

 

解(或證明):

22.證明:∵的切線,直線的割線

,(2分)

  又 ∵ ,∴ ,∴(5分),

     ∵ ,

∴ △與△兩邊對應成比例,且夾角相等(7分),

∴ △∽△(8分)

(10分).

23.解:(Ⅰ)直線的參數(shù)方程是,即 ..5分

(Ⅱ)設,則,

(7分),

,即圓的極坐標方程為     

..........10分

24.解:由,∴不等式的解集為(4分)

∴當≤1時,為空集,顯然成立,......6分

>1時,=......8分

  得      ,即,

這與>1矛盾,

綜合上述得:≤1........10分

 


同步練習冊答案