因而.n是滿足最小整數(shù). 查看更多

 

題目列表(包括答案和解析)

精英家教網如圖算法輸出的結果是( 。
A、滿足1×3×5×…×n>2013的最小整數(shù)nB、1+3+5+…+2013C、求方程1×3×5×…×n=2013中的n值D、1×3×5×…×2013

查看答案和解析>>

已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*)
(1)求證:數(shù)列{an+1-an}是等比數(shù)列,并求{an}的通項公式;
(2)記數(shù)列{an}的前n項和Sn,求使得Sn>21-2n成立的最小整數(shù)n.

查看答案和解析>>

正項數(shù)列{an}滿足a1=1,a2=2,又{
anan+1
}是以
1
2
為公比的等比數(shù)列,則使得不等式
1
a1
+
1
a2
+…+
1
a2n+1
>2013成立的最小整數(shù)n為
6
6

查看答案和解析>>

已知數(shù)列{an}滿足3an+1+an=4(n≥1)且a1=9,前n項和為Sn,則滿足|Sn-n-6|<
1125
的最小整數(shù)n是
7
7

查看答案和解析>>

已知點A(1,
1
3
)
是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點,等比數(shù)列an的前n項和為f(n)-c,數(shù)列bn(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2).
(1)求數(shù)列{an}與{bn}的通項公式.
(2)若數(shù)列{
1
bnbn+1
}
的前n項和為Tn,問滿足Tn
1000
2011
的最小整數(shù)是多少?
(3)若Cn=-
2bn
a n
,求數(shù)列Cn的前n項和Pn

查看答案和解析>>


同步練習冊答案