A. B. C. D.第Ⅱ卷非選擇題 查看更多

 

題目列表(包括答案和解析)

20、下面兩幅統(tǒng)計圖(如圖(1)、(2)),反映了某市甲、乙兩所學校學生參加課外活動的情況,看圖解答下列問題:
(1)通過對圖(1)、(2)的分析,分別寫一條你認為正確的結論;
(2)2005年甲、乙兩所學校參加科技活動的學生人數(shù)共多少人?

查看答案和解析>>

下列各圖是棱長為1cm的小正方體擺成的,如圖①中,共有1個小正方體,從正面看有1個正方形,表面積為6cm2;如圖②中,共有4個小正方體,從正面看有3個正方形,表面積為18cm2;如圖③,共有10個小正方體,從正面看有6個正方形,表面積為36cm2;…
(1)第6個圖中,共有多少個小正方體?從正面看有多少個正方形?表面積是多少?精英家教網(wǎng)
(2)第n個圖形中,從正面看有多少個正方形?表面積是多少?

查看答案和解析>>

已知a,b表示兩個非零的有理數(shù),則
|a|
a
+
|b|
b
的值不可能是( 。
A、2B、-2C、1D、0

查看答案和解析>>

26、一家飯店,地面上18層,地下1層,地面上1樓為接待處,頂樓為公共設施處,其余16層為客房;地面下1樓為停車場.
(1)客房7樓與停車場相差幾層樓?
(2)某會議接待員把汽車停在停車場,進入該層電梯,往上14層,又下5層,再下3層,最后上6層,你知道他最后在哪里?
(3)某日,電梯檢修,一服務生在停車場停好汽車后,只能走樓梯,他先去客房,依次到了8樓、接待處、4樓,又回接待處,最后回到停車場,他共走了幾層樓梯?

查看答案和解析>>

反比例函數(shù)y=
2
x
的圖象位于( 。
A、第一、二象限
B、第一、三象限
C、第二、四象限
D、第三、四象限

查看答案和解析>>

題號

1

2

3

4

5

6

7

8

答案

C

A

D

B

B

D

C

B

9、  10、  11、  12、32π  13、  4   14、28   15、35

16、18  17、2,3,4,5,7(多填少填均不得分)  18、14

19、(1)解 原式=-1-2+2÷4(2分) (2 解 原式= (2分)

       =              (4分)          =         

                                            =1                      (4分)

20、(1)解:將(2)代入(1)得           (2) 解:   3(x+1)>8x+6      (2分)

      2(y+1)+y=5                                    -5x>3       

     ∴  y=1         (2分)                        ∴x<       (4分)

把y=1代入(2)得   x=2 ,      

        (4分)

21. (1)A品種樹苗棵數(shù)

     為540÷90%=600(棵)      

     C品種的樹苗棵數(shù)為368÷92%=400(棵)

      B品種樹苗棵數(shù)為1500-600-400=500(棵)

     答:去年A品種樹苗栽600棵,B品種樹苗栽500棵,C品種樹苗栽400棵. (4分)

(2)B品種成活棵數(shù)

     為1500×92.2%-540-368=475(棵)      (6分)

   B品種成活率=

         ∴B品種成活率最高

∴今年應栽種B品種樹苗.                   (8分)

22、解(1)OC=30 海里.   (4分)

       (2)在Rt△OBC中

       ∵OB=,OC=30 ∴sin∠OBC=      

∴∠OBC=60°                   

∴B在港口O的北偏東60°方向上  (8分)

23、(1)解:設紅球的個數(shù)為x

                               (2分)

     解得                            (3分)

     經(jīng)檢驗:x=1是所列方程根且符合題意  (4分)

     所以口袋中紅球的個數(shù)為1個           (5分)

(2)用樹狀圖分析如下

或列表分析:         

 

白球1

白球2

黃球

紅球

白球1

(白2,白1)

(黃,白1)

(紅,白1)

白球2

(白1,白2)

 

(黃,白2)

(紅,白2)

黃球

(白1,黃)

(白2,黃)

 

(紅,黃)

紅球

(白1,紅)

(白2,紅)

(黃,紅)

 

 共有12種等可能結果                         (8分)

其中2個白球的可能結果是2個.

所以兩次均摸到白球的概率為 . (10分)

        

24、解(1)∵∠B=40°CB=CA∴∠CAB=40°又∵AC=AD∴∠ADC=70°    (3分)

∴∠BCD=30°    (5分)

(2)∵ BA=BE,∴∠BAE=∠BEA,

∵CF∥AB∴∠EFC=∠BAE , 

 ∴∠EFC=∠BEA  ∴CE=CF ,     (7分)

∵BC=AC=AD,  ∴CE=BD,

∴CF=BD               (10分)

25、解(1)設圓弧所在圓的圓心為O,

       連接OE交AD于F,連接OA

  設⊙O半徑為x,則OF=米, AF=

       在Rt△AOF中

             (3分)

                               

       圓弧門最高點到地面的距離為2米.        (5分)

    (2)∵OA=1,  OF=∴∠AOF=60°∴∠AOD=120°(8分)

弧AMD的長=米       (10分)

26、解(1)由已知得A、B的橫坐標分別為1,3

       所以有            (3分)

         解得                     (4分)

  (2)設直線AB交x軸于C點

       由y2=-x+4 得

       C(4,0),A(1,3),B(3,1)    (8分)

     ∵S△AOC   ,S△BOC   ∴S△AOB=4         (10分)

27、(1)①設AF=x,則FG=x

在Rt△DFG中

      

     解得 x=5,    所以AF=5       (4分)

② 過G作GH⊥AB于H, 設AE=y(tǒng),

則HE=y(tǒng)-4. 在Rt△EHG中

      ,  解得 y=10

     在Rt△AEF中,      EF=       (8分)

     方法二:連接AG,由△ADG∽△EAF得

,  所以.∵AG=,  AH= ,  FH=,

∴AF=5,∴AE=10∴EF=                      (8分)

(2)假設A點翻折后的落點為P,則P應該在以E為圓心,EA長為半徑的圓上。要保證P總在矩形內部,CD與圓相離,BC與圓也要相離,則滿足關系式:

  ,       0<AE<7(僅寫AE<7不扣分)         (12分)

28、解(1)易得A(-1,0)  B(4,0)           

       把x=-1,y=0;x=4,y=0分別代入

      

      

       解得(3分)

文本框:  (2)設M點坐標為

①當時,

所以,當時,d取最大值,值為4;

②當0<a<4時,

所以,當時,d取最大值,最大值為8;

綜合①、②得,d的最大值為8.

(不討論a的取值情況得出正確結果的

得2分)                              (7分)

(3)N點的坐標為(2,6)

過A作y軸的平行線AH,過F作FG⊥y軸交AH于點Q,過F作FK⊥x軸于K,

 ∵∠CAB=45°, AC平分∠HAB,∴FQ=FK

∴FN+FG=FN+FK-1

所以,當N、F、K在一條直線上時,F(xiàn)N+FG=FN+FK-1最小,最小值為5.(10分)

易求直線AC的函數(shù)關系式為y=x+1,把x=2代入y=x+1得y=3,

所以F點的坐標為(2,3).                                         (12分)


同步練習冊答案