16. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點.

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項和為Sn,證明:;

   (Ⅲ)設(shè),證明:對任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數(shù)η的概率分布和數(shù)學期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

   (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

   (2)當時,求弦長|AB|的取值范圍.

查看答案和解析>>

1.C  2.B  3.B  4.D  5.C   6.A  7.B  8.B  9.D  10.C

11.   12.1                 13.        14.4            15.

16.當a>1時,有,∴,∴,∴,∴當0<a<1時,有,∴.

綜上,當a>1時,;當0<a<1時,

17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:

(Ⅱ)出現(xiàn)奇數(shù)枚正面朝上的概率為:

∴出現(xiàn)偶數(shù)枚正面朝上的概率為,∴概率相等.

18.(Ⅰ)在梯形ABCD中,∵,

∴四邊形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交線為AC,∴平面ACFE.

(Ⅱ)當時,平面BDF. 在梯形ABCD中,設(shè),連結(jié)FN,則

,∴∴MFAN,

∴四邊形ANFM是平行四邊形. ∴

又∵平面BDF,平面BDF. ∴平面BDF.

19.(Ⅰ)設(shè)橢圓方程為,則有,∴a=6, b=3.

∴橢圓C的方程為

(Ⅱ),設(shè)點,則

,

,∴,∴的最小值為6.

20.(Ⅰ)設(shè),,

單調(diào)遞增.

(Ⅱ)當時,,又,即;

      當時,,,由,得.

的值域為

(Ⅲ)當x=0時,,∴x=0為方程的解.

當x>0時,,∴,∴

當x<0時,,∴,∴

即看函數(shù)

與函數(shù)圖象有兩個交點時k的取值范圍,應(yīng)用導數(shù)畫出的大致圖象,∴,∴

21.(Ⅰ)令n=1有,,∴,∴.

(Ⅱ)∵……① ∴當時,有……②

①-②有,

將以上各式左右兩端分別相乘,得,∴

當n=1,2時也成立,∴.

(Ⅲ),當時,

,

時,

時,

時,

 

 

 

 


同步練習冊答案