22.(I)解: 查看更多

 

題目列表(包括答案和解析)

(I)計(jì)算:0.25×(-
1
2
)-1-4÷(
5
-1)0-(
1
27
)-
1
3
+lg25+2lg2
;
(II)已知定義在區(qū)間(-1,1)上的奇函數(shù)f(x)單調(diào)遞增.解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>

(I)計(jì)算:0.25×數(shù)學(xué)公式;
(II)已知定義在區(qū)間(-1,1)上的奇函數(shù)f(x)單調(diào)遞增.解關(guān)于t的不等式f(t-1)+f(t)<0.

查看答案和解析>>




(I)若能表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)的和,求的解析式;
(II)若命題P:函數(shù)在區(qū)間上是增函數(shù)與命題Q:.函數(shù)是減函數(shù)有且僅有一個(gè)是真命題求a的取值范圍

查看答案和解析>>

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

(1)化簡(jiǎn)(
a
a+b
-
a2
a2+2ab+b2
)÷(
a
a+b
-
a2
a2-b2
)
;
(2)計(jì)算
1
2
lg25+lg2-lg
0.1
-log29×log32
;
(3)
-1
=i
,驗(yàn)算i是否方程2x4+3x3-3x2+3x-5=0的解;
(4)求證:
sin(
π
4
+θ)
sin(
π
4
-θ)
+
cos(
π
4
+θ)
cos(
π
4
-θ)
=
2
cos2θ

查看答案和解析>>


同步練習(xí)冊(cè)答案