22.已知函數(shù)f(x)=ax3+bx2,曲線y=f(x)過點(diǎn)P,且在點(diǎn)P處的切線恰好與直線x-3y=0垂直.(1)求a.b的值,(2)若f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍. 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.

   (Ⅰ)求函數(shù)f(x)的解析式;

  (Ⅱ)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;

   (Ⅲ)若過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.

   (Ⅰ)求函數(shù)f(x)的解析式;

  (Ⅱ)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;

   (Ⅲ)若過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.

(Ⅰ)求函數(shù)f(x)的解析式;

(Ⅱ)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;

(Ⅲ)若過點(diǎn)A(1,m)(m≠-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值。
(1)求函數(shù)f(x)的解析式;
(2)求證:對(duì)于區(qū)間[-1,1]上任意兩個(gè)自變量的值x1,x2,都有|f(x1)-f(x2)|≤4;
(3)若過點(diǎn)A(1,m)(m ≠-2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的范圍。

查看答案和解析>>

已知函數(shù)f(x)=ax3+bx2-3x在x=±1處取得極值.

(1)討論f(1)和f(-1)是函數(shù)f(x)的極大值還是極小值;

(2)過點(diǎn)A(0,16)作曲線y=f(x)的切線,求此切線方程.

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

B

D

C

C

D

B

A

A

B

C

 

二、填空題:

13.2x    14. x=-1    15.k2=2.143  沒有   16.(-∞,-3]

三、解答題:

17.(1)z=1+i    |z|=    (2分)

(2)a=0,b=1             (4分)

18.綜合法、分析法均可(略)

19.(1)依題意有:解得a=1,b=-3(3分)

  (2)f(x)=x3-3x   f′(x)=3x2-3

當(dāng)f′(x)>0,即x>1或x<-1,∴單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞)

當(dāng)f′(x)>0,-1<x<1,∴單調(diào)遞減區(qū)間為(-1,1)                   (5分)

20.(1)a1=,a2=,a3=,a4=       (2分)

(2)an=                         (3分)

(3)Sn=1-                    (5分)

21.解:依題意,直線斜率顯然存在,設(shè)直線斜率為k,則直線的方程為:y+1=kx

拋物線y=-與直線相交于A、B兩點(diǎn)

x2+2kx-2=0,∴△=4k2+8>0,

設(shè)A(x1,x2),B(x2,y2) 則x1+x2=-2k

∵kOA+KOB=1     ∴

即x1+x2=-2=-2k∴k=1

22.(1)a=1,b=3

  (2)∵f(x)=x3+3x2在[m,m+1]上單調(diào)遞增

     ∴f′(x)=3x2+6x≥0,在[m,m+1]上

     ∵3x2+6x≥0, ∴x≥0或x≤-2

     ∴m+1≤-2或m≥0即m≤-3或m≥0

     ∴m的取值范圍是{m|m≤-3或m≥0}

 


同步練習(xí)冊(cè)答案