(Ⅱ)用表示甲進(jìn)行3次實(shí)驗(yàn)成功的次數(shù).求隨機(jī)變量的概率分布.數(shù)學(xué)期望E及方差D. 查看更多

 

題目列表(包括答案和解析)

計(jì)算機(jī)考試分理論考試與上機(jī)操作考試兩部分進(jìn)行,每部分考試成績(jī)只記“合格”與“不合格”,兩部分考試都“合格”則計(jì)算機(jī)考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中合格的概率分別為
3
5
,
3
4
2
3
;在上機(jī)操作考試中合格的概率分別為
9
10
,
5
6
,
7
8
.所有考試是否合格相互之間沒(méi)有影響.
(1)甲、乙、丙三人在同一次計(jì)算機(jī)考試中誰(shuí)獲得“合格證書”可能性最大?
(2)求這三人計(jì)算機(jī)考試都獲得“合格證書”的概率;
(3)用ξ表示甲、乙、丙三人在理論考核中合格人數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

在某校組織的一次籃球定點(diǎn)投籃比賽中,兩人一對(duì)一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對(duì)方接替投籃.現(xiàn)由甲、乙兩人進(jìn)行一對(duì)一投籃比賽,甲和乙每次投籃命中的概率分別是
1
3
1
2
.兩人共投籃3次,且第一次由甲開始投籃.假設(shè)每人每次投籃命中與否均互不影響.
(Ⅰ)求3次投籃的人依次是甲、甲、乙的概率;
(Ⅱ)若投籃命中一次得1分,否則得0分.用ξ表示甲的總得分,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

甲乙兩班進(jìn)行消防安全知識(shí)競(jìng)賽,每班出3人組成甲乙兩支代表隊(duì),首輪比賽每人一道必答題,答對(duì)則為本隊(duì)得1分,答錯(cuò)不答都得0分,已知甲隊(duì)3人每人答對(duì)的概率分別為
3
4
2
3
,
1
2
,乙隊(duì)每人答對(duì)的概率都是
2
3
.設(shè)每人回答正確與否相互之間沒(méi)有影響,用ξ表示甲隊(duì)總得分.
(Ⅰ)求隨機(jī)變量ξ的分布列及其數(shù)學(xué)期望E(ξ);
(Ⅱ)求在甲隊(duì)和乙隊(duì)得分之和為4的條件下,甲隊(duì)比乙隊(duì)得分高的概率.

查看答案和解析>>

在某校組織的一次籃球定點(diǎn)投籃比賽中,兩人一對(duì)一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對(duì)方接替投籃.現(xiàn)由甲、乙兩人進(jìn)行一對(duì)一投籃比賽,甲和乙每次投籃命中的概率分別是.兩人投籃3次,且第一次由甲開始投籃,假設(shè)每人每次投籃命中與否均互不影響.

(1)求3次投籃的人依次是甲、甲、乙的概率;

(2)若投籃命中一次得1分,否則得0分,用表示甲的總得分,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

() (本小題滿分13分)

在某校組織的一次籃球定點(diǎn)投籃比賽中,兩人一對(duì)一比賽規(guī)則如下:若某人某次投籃命中,則由他繼續(xù)投籃,否則由對(duì)方接替投籃. 現(xiàn)由甲、乙兩人進(jìn)行一對(duì)一投籃比賽,甲和乙每次投籃命中的概率分別是,.兩人共投籃3次,且第一次由甲開始投籃. 假設(shè)每人每次投籃命中與否均互不影響.

(Ⅰ)求3次投籃的人依次是甲、甲、乙的概率;

(Ⅱ)若投籃命中一次得1分,否則得0分. 用ξ表示甲的總得分,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

 

一、選擇題

A卷:BACDB    DCABD    BA

B卷:BDACD    BDCAB    BA

二、填空題

13.15  

14.210

15.

16.①④

三、解答題:

17. 解:(注:考試中計(jì)算此題可以使用分?jǐn)?shù),以下的解答用的是小數(shù))

   (Ⅰ)同文(Ⅰ)

   (Ⅱ)的概率分別為

隨機(jī)變量的概率分布為

0

1

2

3

P

0.216

0.432

0.288

0.064

………………8分

的數(shù)學(xué)期望為E=0×0.216+1×0.432+2×0.288+3×0.064=1.2.…………10分

(或利用E=mp=3×0.4=1.2)

的方差為

D=(0-1.2)2×0.216+(1-1.2)2×0.432+(2-1.2)2×0.288+(3-1.2)2×0.064

=0.72.…………………………12分

(或利用D=nq=3×0.4×0.6=0.72)

 

18.解:

   (Ⅰ)

…………4分

所以,的最小正周期,最小值為-2.…………………………6分

   (Ⅱ)列表:

x

0

2

0

-2

0

 

 

 

 

 

 

 

 

 

 

 

 

…………………12分

(19?文)同18?理.

(19?理)解:(Ⅰ)取A1A的中點(diǎn)P,連PM、PN,則PN//AD

…………………………6分

 

    <li id="zaafz"></li>
  1. <style id="zaafz"></style>
  2. <form id="zaafz"><xmp id="zaafz"></xmp></form>
  3.  

     

     

     

     

     

     

     

     

     

     

       (Ⅱ)由(Ⅰ)知,則就是所求二面角的平面角.………………………8分

             顯然

    利用等面積法求得A1O=AO=在△A1OA中由余弦定理得

    cos∠A1OA=.

    所以二面角的大小為arccos……………………………………………12分

    (20?文)同19理.

    (20?理)(I)證明:當(dāng)q>0時(shí),由a1>0,知an>0,所以Sn>0;………………2分

    當(dāng)-1<q<0時(shí),因?yàn)閍1>0,1-q>0,1-qn>0,所以.

    綜上,當(dāng)q>-1且q≠0時(shí),Sn>0總成立.……………………5分

       (II)解:an+1=anq,an+2=anq2,所以bn=an+1-kan+2=an(q-kq2).

            Tn=b1+b2+…+bn=(a1+a2+…+an)(q-kq2)=Sn(q-kq2).……………………9分

            依題意,由Tn>kSn,得Sn(q-kq2)>kSn.

            ∵Sn>0,∴可得q-kq2>k,

    即k(1+q2)<q,k<.

    ∴k的取值范圍是. ……………………12分

    (21?文)解:f′(x)=3x2+4ax-b.………………………………2分

             設(shè)f′(x)=0的二根為x1,x2,由已知得

             x1=-1,x2≥2,………………………………………………4分

             …………………………7分

            解得

            故a的取值范圍是…………………………………………12分

    (21?理)解:(I)設(shè)橢圓方程

            由2c=4得c=2,又.

            故a=3,b2=a2-c2=5,

            ∴所求的橢圓方程.…………………………………………5分

       (II)點(diǎn)F的坐標(biāo)為(0,2),設(shè)直線AB的方程為y=kx+2,A(x1,y1)、B(x2,y2).

    得(9+5k2)x2+20kx-25=0,………………………………8分

    顯然△>0成立,

    根據(jù)韋達(dá)定理得

    ,                       ①

    .                           ②

    ,

    ,代入①、②得

                                         ③

                                        ④

    由③、④得

     …………………………………………14分

    (22.文)同21理,其中3分、6分、8分、12分依次更改為5分、8分、10分、14分.

    (22.理)(1)證明:令

    原不等式…………………………2分

    ,

    單調(diào)遞增,,

    ………………………………………………5分

    ,

    單調(diào)遞增,,

     …………………………………………8分

    ………………………………9分

       (Ⅱ)令,上式也成立

    將各式相加

    ……………11分

    ……………………………………………………………………14分

     


    同步練習(xí)冊(cè)答案