當方程(*)的解為 若 查看更多

 

題目列表(包括答案和解析)

設橢圓 )的一個頂點為,分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 的直線  與橢圓 交于 , 兩點.

(1)求橢圓的方程;

(2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運用。(1)中橢圓的頂點為,即又因為,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當直線斜率存在時,當直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

解:(1)橢圓的頂點為,即

,解得, 橢圓的標準方程為 --------4分

(2)由題可知,直線與橢圓必相交.

①當直線斜率不存在時,經(jīng)檢驗不合題意.                    --------5分

②當直線斜率存在時,設存在直線,且,.

,       ----------7分

,               

   = 

所以,                               ----------10分

故直線的方程為 

 

查看答案和解析>>

函數(shù),方程的兩個根分別為1和4.

(Ⅰ)當 a=3且曲線過原點時,求的解析式。

(Ⅱ)若無極值點,求a的取值范圍

查看答案和解析>>

(14分)

已知函數(shù)),且方程有兩個實數(shù)根為;

(1)求函數(shù)的解析式。

(2)當時,若恒成立,求的取值范圍。

(3)設,解關(guān)于的不等式:

查看答案和解析>>

已知f(x)的定義域為{x∈R|x≠0},且f(x)是奇函數(shù),當x>0時f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0時的表達式;
(2)求f(x)在x<0時的表達式;
(3)若關(guān)于x的方程f(x)=ax(a∈R)有解,求a的取值范圍.

查看答案和解析>>

已知f(x)的定義域為{x∈R|x≠0},且f(x)是奇函數(shù),當x>0時,f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2
(1)求b,c的值;
(2)求f(x)在x<0時的表達式;
(3)若關(guān)于x的方程f(x)=ax,(a∈R)有解,求a的取值范圍.

查看答案和解析>>


同步練習冊答案