(I)求點的軌跡方程.并討論點的軌跡類型, 查看更多

 

題目列表(包括答案和解析)

記平面內(nèi)與兩定點A1(-2,0),A2(2,0)連線的斜率之積等于常數(shù)m(其中m<0)的動點B的軌跡,加上A1,A2兩點所構(gòu)成的曲線為C
(I)求曲線C的方程,并討論C的形狀與m的值的關(guān)系;
(Ⅱ)當m=-
3
4
時,過點F(1,0)且斜率為k(k#0)的直線l1交曲線C于M.N兩點,若弦MN的中點為P,過點P作直線l2交x軸于點Q,且滿足
MN
PQ
=0
.試求
|
PQ
|
|
MN
|
的取值范圍.

查看答案和解析>>

記平面內(nèi)與兩定點A1(-2,0),A2(2,0)連線的斜率之積等于常數(shù)m(其中m<0)的動點B的軌跡,加上A1,A2兩點所構(gòu)成的曲線為C
(I)求曲線C的方程,并討論C的形狀與m的值的關(guān)系;
(Ⅱ)當m=-
3
4
時,過點F(1,0)且斜率為k(k#0)的直線l1交曲線C于M.N兩點,若弦MN的中點為P,過點P作直線l2交x軸于點Q,且滿足
MN
PQ
=0
.試求
|
PQ
|
|
MN
|
的取值范圍.

查看答案和解析>>

已知M(―3,0)、N(3,0),P為坐標平面上的動點,且直線PM與直線PN的斜率之積為常數(shù)

   (I)求P點的軌跡方程并討論軌跡是什么曲線?

   (II)若,P點的軌跡為曲線C,過點Q(2,0)的直線l與曲線C交于不同的兩點A、B,設(shè)軸上的截距的變化范圍。

查看答案和解析>>

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>


同步練習冊答案