.這與=0矛盾.故的斜率存在.--------- 查看更多

 

題目列表(包括答案和解析)

在直角坐標(biāo)系xOy中,一直角三角形ABC,∠ C=90°,B、C在x軸上且關(guān)于原點(diǎn)O對(duì)稱,D在邊BC上,BD=3DC,△ABC的周長為12.若一雙曲線E以B、C為焦點(diǎn),且經(jīng)過A、D兩點(diǎn).

(Ⅰ)求雙曲線E的方程;

(Ⅱ)若過一點(diǎn)P(m,0)(m為常數(shù))的斜率存在的直線l與雙曲線E交于不同于雙曲線頂點(diǎn)的兩點(diǎn)M、N,且,問在x軸上是否存在定點(diǎn)G,使?若存在,求出所有這樣的定點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

有對(duì)稱中心的曲線叫做有心曲線,顯然圓、橢圓、雙曲線都是有心曲線.過有心曲線的中心的弦叫有心曲線的直徑(為研究方便,不妨設(shè)直徑所在直線的斜率存在).
定理:過圓x2+y2=r2(r>0)上異于某直徑兩端點(diǎn)的任意一點(diǎn),與這條直徑的兩個(gè)端點(diǎn)連線,則兩條直線的斜率之積為定值-1.寫出該定理在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中的推廣(不必證明):
過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上異于某直徑兩端點(diǎn)的任意一點(diǎn),與這條直徑的兩個(gè)端點(diǎn)連線,則兩條連線的斜率之積為定值-
b2
a2
過橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上異于某直徑兩端點(diǎn)的任意一點(diǎn),與這條直徑的兩個(gè)端點(diǎn)連線,則兩條連線的斜率之積為定值-
b2
a2

查看答案和解析>>

有對(duì)稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑.定理:如果圓x2+y2=r2(r>0)上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn)與這條直徑兩個(gè)端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1.寫出該定理在雙曲線
x2
a2
-
y2
b2
=1(a,b>0)
中的推廣
x2
a2
-
y2
b2
=1(a,b>0)
上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn),與這條直徑兩個(gè)端點(diǎn)的連線的斜率乘積等于
b2
a2
x2
a2
-
y2
b2
=1(a,b>0)
上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn),與這條直徑兩個(gè)端點(diǎn)的連線的斜率乘積等于
b2
a2

查看答案和解析>>

有對(duì)稱中心的曲線叫做有心曲線,過有心曲線中心的弦叫做有心曲線的直徑.定理:如果圓x2+y2=r2(r>0)上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn)與這條直徑兩個(gè)端點(diǎn)連線的斜率存在,則這兩條直線的斜率乘積為定值-1.寫出該定理在有心曲線
x2
m
+
y2
n
=1(mn≠0)
中的推廣
x2
m
+
y2
n
=1(mn≠0)
上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn),與這條直徑兩個(gè)端點(diǎn)的連線斜率乘積等于-
n
m
x2
m
+
y2
n
=1(mn≠0)
上異于一條直徑兩個(gè)端點(diǎn)的任意一點(diǎn),與這條直徑兩個(gè)端點(diǎn)的連線斜率乘積等于-
n
m

查看答案和解析>>

(2009•上海模擬)在解決問題:“證明數(shù)集A={x|2<x≤3}沒有最小數(shù)”時(shí),可用反證法證明.假設(shè)a(2<a≤3)是A中的最小數(shù),則取a′=
a+2
2
,可得:2=
2+2
2
<a′=
a+2
2
a+a
2
=a≤3
,與假設(shè)中“a是A中的最小數(shù)”矛盾!那么對(duì)于問題:“證明數(shù)集B={x|x=
n
m
,m,n∈N*,并且n<m}
沒有最大數(shù)”,也可以用反證法證明.我們可以假設(shè)x=
n0
m0
是B中的最大數(shù),則可以找到x'=
n0+1
m0+1
n0+1
m0+1
(用m0,n0表示),由此可知x'∈B,x'>x,這與假設(shè)矛盾!所以數(shù)集B沒有最大數(shù).

查看答案和解析>>


同步練習(xí)冊(cè)答案