解:(Ⅰ)設動圓P的半徑為.則│PA│=.│PB│=, 查看更多

 

題目列表(包括答案和解析)

(2012•韶關二模)在直角坐標系xOy中,動點P與定點F(1,0)的距離和它到定直線x=2的距離之比是
2
2
,設動點P的軌跡為C1,Q是動圓C2x2+y2=r2(1<r<2)上一點.
(1)求動點P的軌跡C1的方程,并說明軌跡是什么圖形;
(2)設曲線C1上的三點A(x1y1),B(1,
2
2
),C(x2,y2)
與點F的距離成等差數列,若線段AC的垂直平分線與x軸的交點為T,求直線BT的斜率k;
(3)若直線PQ與C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

精英家教網如圖,在邊長為2的正六邊形ABCDEF中,動圓Q的半徑為1,圓心在線段CD(含端點)上運動,P是圓Q上及內部的動點,設向量
AP
=m
AB
+n
AF
(m,n為實數),則m+n的取值范圍是( 。
A、(1,2]
B、[5,6]
C、[2,5]
D、[3,5]

查看答案和解析>>

在直角坐標系xOy中,動點P與定點F(1,0)的距離和它到定直線x=2的距離之比是,設動點P的軌跡為C1,Q是動圓(1<r<2)上一點.
(1)求動點P的軌跡C1的方程,并說明軌跡是什么圖形;
(2)設曲線C1上的三點與點F的距離成等差數列,若線段AC的垂直平分線與x軸的交點為T,求直線BT的斜率k;
(3)若直線PQ與C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

在直角坐標系xOy中,動點P與定點F(1,0)的距離和它到定直線x=2的距離之比是,設動點P的軌跡為C1,Q是動圓(1<r<2)上一點.
(1)求動點P的軌跡C1的方程,并說明軌跡是什么圖形;
(2)設曲線C1上的三點與點F的距離成等差數列,若線段AC的垂直平分線與x軸的交點為T,求直線BT的斜率k;
(3)若直線PQ與C1和動圓C2均只有一個公共點,求P、Q兩點的距離|PQ|的最大值.

查看答案和解析>>

已知平面內動點P(x,y)到定點F(1,0)的距離與其到定直線l:x=4的距離之比是
12
,設動點P的軌跡為M,軌跡M與x軸的負半軸交于點A,過點F的直線交軌跡M于B、C兩點.
(1)求軌跡M的方程;
(2)證明:當且僅當直線BC垂直于x軸時,△ABC是以BC為底邊的等腰三角形;
(3)△ABC的面積是否存在最值?如果存在,求出最值;如果不存在,說明理由.

查看答案和解析>>


同步練習冊答案