當且僅當.即時.等號成立.故四邊形MNRQ的面積的最小值為72. 查看更多

 

題目列表(包括答案和解析)

一段長為32米的籬笆圍成一個一邊靠墻的矩形菜園,墻長18米,問這個矩形的長、寬各為多少時,菜園的面積最大,最大面積是多少?

【解析】解:令矩形與墻垂直的兩邊為寬并設矩形寬為,則長為

所以矩形的面積   ()     (4分=128    (8分)

當且僅當時,即時等號成立,此時有最大值128

所以當矩形的長為=16,寬為8時,

菜園面積最大,最大面積為128 (13分)答:當矩形的長為16米,寬為8米時。菜園面積最大,最大面積為128平方米(注:也可用二次函數(shù)模型解答)

 

查看答案和解析>>

(2008•奉賢區(qū)模擬)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)給定兩個函數(shù):f1(x)=
1
x
(x>0)
,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
(3)試利用(2)的結論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

(1)已知a,b,x,y是正實數(shù),求證:
a2
x
+
b2
y
(a+b)2
x+y
,當且僅當
a
x
=
b
y
時等號成立;
(2)求函數(shù)f(x)=
1
3-tan2x
+
9
8+sec2x
的最小值,并指出取最小值時x的值.

查看答案和解析>>

(2008•奉賢區(qū)一模)我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對任意x,y,
x+y
2
∈D
均滿足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,當且僅當x=y時等號成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大小.
(2)設函數(shù)g(x)=-x2,求證:g(x)∈M.
(3)已知函數(shù)f(x)=log2x∈M.試利用此結論解決下列問題:若實數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

已知a,b都是正數(shù),求證:
2ab
a+b
a+b
2
a2+b2
2
,當且僅當a=b時等號成立.

查看答案和解析>>


同步練習冊答案