綜上所述.點T的軌跡C的方程是 查看更多

 

題目列表(包括答案和解析)

精英家教網(wǎng)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點,滿足|
F1Q
|=2a.點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足
PT
TF2
=0,|
TF2
|≠0.
(Ⅰ)設(shè)x為點P的橫坐標(biāo),證明|
F1P
|=a+
c
a
x;
(Ⅱ)求點T的軌跡C的方程;
(Ⅲ)試問:在點T的軌跡C上,是否存在點M,使△F1MF2的面積S=b2.若存在,求∠F1MF2的正切值;若不存在,請說明理由.

查看答案和解析>>

設(shè)雙曲線C:
x2
2
-y2=1的左、右頂點分別為A1、A2,垂直于x軸的直線m與雙曲線C交于不同的兩點P、Q.
(1)若直線m與x軸正半軸的交點為T,且
A1P
A2Q
=1,求點T的坐標(biāo);
(2)求直線A1P與直線A2Q的交點M的軌跡E的方程;
(3)過點F(1,0)作直線l與(2)中的軌跡E交于不同的兩點A、B,設(shè)
FA
=λ•
FB
,若λ∈[-2,-1],求|
TA
+
TB
|(T為(1)中的點)的取值范圍.

查看答案和解析>>

(2011•揭陽一模)已知定點A(-3,0),MN分別為x軸、y軸上的動點(M、N不重合),且AN⊥MN,點P在直線MN上,
NP
=
3
2
MP

(1)求動點P的軌跡C的方程;
(2)設(shè)點Q是曲線x2+y2-8x+15=0上任一點,試探究在軌跡C上是否存在點T?使得點T到點Q的距離最小,若存在,求出該最小距離和點T的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

已知向量
a
=(x,
2
y),
b
=(1,0)
,且(
a
+2
b
)⊥(
a
-2
b
)
.點T(x,y)
(1)求點T的軌跡方程C;
(2)過點(0,1)且以(2,
2
)
為方向向量的一條直線與軌跡方程C相交于點P,Q兩點,OP,OQ所在的直線的斜率分別是kOP、kOQ,求kOP•kOQ的值.

查看答案和解析>>

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>


同步練習(xí)冊答案