12.橢圓的長(zhǎng)軸長(zhǎng)為6.左頂點(diǎn)在圓上.左準(zhǔn)線為y軸.則該椅橢圓的離心率e的取值范圍是 查看更多

 

題目列表(包括答案和解析)

已知橢圓C:數(shù)學(xué)公式=1的兩個(gè)焦點(diǎn)的坐標(biāo)分別為F1(-1,0)、F2(1,0),點(diǎn)P在橢圓上,數(shù)學(xué)公式=0且△PF1F2的周長(zhǎng)為6.
(Ⅰ)求橢圓C的方程和△PF1F2的外接圓D的方程;
(Ⅱ)A為橢圓C的左頂點(diǎn),過(guò)點(diǎn)F2的直線l與橢圓C交于M、N兩點(diǎn),且M、N均不在x軸上,設(shè)直線AM、AN的斜率分別為k1、k2,求k1•k2的值.

查看答案和解析>>

已知橢圓C:=1的兩個(gè)焦點(diǎn)的坐標(biāo)分別為F1(-1,0)、F2(1,0),點(diǎn)P在橢圓上,=0且△PF1F2的周長(zhǎng)為6.
(Ⅰ)求橢圓C的方程和△PF1F2的外接圓D的方程;
(Ⅱ)A為橢圓C的左頂點(diǎn),過(guò)點(diǎn)F2的直線l與橢圓C交于M、N兩點(diǎn),且M、N均不在x軸上,設(shè)直線AM、AN的斜率分別為k1、k2,求k1•k2的值.

查看答案和解析>>

已知橢圓C:=1的兩個(gè)焦點(diǎn)的坐標(biāo)分別為F1(-1,0)、F2(1,0),點(diǎn)P在橢圓上,=0且△PF1F2的周長(zhǎng)為6.
(Ⅰ)求橢圓C的方程和△PF1F2的外接圓D的方程;
(Ⅱ)A為橢圓C的左頂點(diǎn),過(guò)點(diǎn)F2的直線l與橢圓C交于M、N兩點(diǎn),且M、N均不在x軸上,設(shè)直線AM、AN的斜率分別為k1、k2,求k1•k2的值.

查看答案和解析>>

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;

(2)在(1)的條件下,直線過(guò)焦點(diǎn),與拋物線交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

(本題滿分18分)第一題滿分4分,第二題滿分6分,第三題滿分8分.

已知橢圓的長(zhǎng)軸長(zhǎng)是焦距的兩倍,其左、右焦點(diǎn)依次為、,拋物線的準(zhǔn)線與軸交于,橢圓與拋物線的一個(gè)交點(diǎn)為.

(1)當(dāng)時(shí),求橢圓的方程;

(2)在(1)的條件下,直線過(guò)焦點(diǎn),與拋物線交于兩點(diǎn),若弦長(zhǎng)等于的周長(zhǎng),求直線的方程;

(3)由拋物線弧和橢圓弧

)合成的曲線叫“拋橢圓”,是否存在以原點(diǎn)為直角頂點(diǎn),另兩個(gè)頂點(diǎn)落在“拋橢圓”上的等腰直角三角形,若存在,求出兩直角邊所在直線的斜率;若不存在,說(shuō)明理由.

查看答案和解析>>

 

一、單項(xiàng)選擇題(每小題5分,共60分)

1.B    2.B    3.D    4.C    5.C    6.D    7.A    8.D    9.B

10.C   11.B   12.A

二、填空題(每小題4分,共16分)

13.

14.

15.1

16.

三、解答題(本大題共6小題,共74分)

17.解:

是減函數(shù).

又由

18.解:

表示本次比賽組織者可獲利400萬(wàn)美元,既本次比賽馬刺隊(duì)(或活塞隊(duì))

以4:0獲勝,所以

表示本次比賽組織者可獲利500萬(wàn)美元,即本次比賽馬刺隊(duì)(或活塞隊(duì))

以4:1獲勝,所以

同理

故的概率分布為

400

500

600

700

 

萬(wàn)美元.

19.解:由

平方相加得

此時(shí)

再平方相加得

,

結(jié)合

20.解:

∴四邊形ABCD為兩組對(duì)邊相等的四邊形.

故四邊形ABCD是平行四邊形.

21.解:

   (1)由拋物線在A處的切線斜率y′=3,設(shè)圓的方程為.①

又圓心在AB的中垂線上,即  ②

由①②得圓心.

   (2)聯(lián)立直線與圓的方程得

.

22.解:

   (1)由題意得,

為的等比數(shù)列,

點(diǎn)

為的等差數(shù)列,

   (2)

       

   (3)  ①

當(dāng)

當(dāng)   ②

由①―②得

 


同步練習(xí)冊(cè)答案