經(jīng)檢驗.上述直線均滿足. 查看更多

 

題目列表(包括答案和解析)

對于變量x與y,現(xiàn)在隨機得到4個樣本點A1(2,1),A2(3,2),A3(5,6),A4(4,5).小馬同學(xué)通過研究后,得到如下結(jié)論:
(1)四個樣本點的散點圖是一個平行四邊形的四個頂點;
(2)平行四邊形A1A2A3A4的兩條對角線A1A3、A2A4所在的直線均可以作為這組樣本點的以變量x為解釋變量的用最小二乘法求出的回歸直線,所不同的是這兩條回歸直線所對應(yīng)的回歸方程的預(yù)報精度不同.你認(rèn)為上述結(jié)論正確嗎?試說明理由.(參考數(shù)據(jù):
4
k=1
xk=14
,
4
k=1
xk2=54,
4
k=1
yk=14,
4
k=1
xkyk=58

查看答案和解析>>

某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 12月1日 12月2日 12月3日 12月4日 12月5日
溫差x(℃) 10 11 13 12 8
發(fā)芽y(顆) 23 25 30 26 16
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗.
參考公式:回歸直線的方程是:
?
y
=bx+a
,其中b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,a=
.
y
-b
.
x
;其中
?
y
i
是與xi
對應(yīng)的回歸估計值.
(Ⅰ)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程
?
y
=bx+a
;
(Ⅱ)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(Ⅰ)中所得的線性回歸方程是否可靠?
(Ⅲ) 請預(yù)測溫差為14℃的發(fā)芽數(shù).

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=Inx,g(x)=1-
1
x

(I)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;
(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù) f(x)圖象上任意兩點,且0<x1<x2,若存在實數(shù)x3>0,使得f′(x3)=
f(x2)-f(x1)
x2-x1
.請結(jié)合(I)中的結(jié)論證明x1<x3<x2

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實數(shù)均滿足f(x)≤g(x)≤kx+b恒成立,其中等號在公共點處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知f(x)=lnx,g(x)=1-
1
x

(1)試探求f(x)與g(x)是否存在“左同旁切線”,若存在,請求出左同旁切線方程;若不存在,請說明理由.
(2)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點,0<x1<x2,且存在實數(shù)x3>0,使得f(x3)=
f(x2)-f(x1)
x2-x1
,證明:x1<x3<x2

查看答案和解析>>

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進(jìn)行了5次試驗,收集數(shù)據(jù)如下:
加工零件x(個) 10 20 30 40 50
加工時間y(分鐘) 64 69 75 82 90
經(jīng)檢驗,這組樣本數(shù)據(jù)具有線性相關(guān)關(guān)系,那么對于加工零件的個數(shù)x與加工時間y這兩個變量,下列判斷正確的是( 。
A、成正相關(guān),其回歸直線經(jīng)過點(30,75)
B、成正相關(guān),其回歸直線經(jīng)過點(30,76)
C、成負(fù)相關(guān),其回歸直線經(jīng)過點(30,76)
D、成負(fù)相關(guān),其回歸直線經(jīng)過點(30,75)

查看答案和解析>>


同步練習(xí)冊答案