已知M.N(2.0)兩點(diǎn).動(dòng)點(diǎn)P在y軸上的射影為H.且使與分別是公比為2的等比數(shù)列的第三.四項(xiàng). (1)求動(dòng)點(diǎn)P的軌跡C的方程, (2)已知過(guò)點(diǎn)N的直線l交曲線C于x軸下方兩個(gè)不同的點(diǎn)A.B.設(shè)R為AB的中點(diǎn).若過(guò)點(diǎn)R與定點(diǎn)Q的直線交x軸于點(diǎn)D(x0.0).求x0的取值范圍. 查看更多

 

題目列表(包括答案和解析)

(1)(2
1
4
)
1
2
-(-9.6)0-(3
3
8
)-
2
3
+(1.5)-2
;
(2)已知m-x=
5
+2
,求
m2x-1+m-2x
m-3x+m3x
的值.

查看答案和解析>>

已知M={a|a≤-2或a≥2},A={a|(a-2)(a2-3)=0,a∈M},則集合A的子集共有( 。

查看答案和解析>>

已知M={x|x2-3x-10≤0},N={x|a+1≤x≤2a-1};(1)若M⊆N,求實(shí)數(shù)a的取值范圍;(2)若M?N,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

已知M(1+cos2x,1),N(1,
3
sin2x+a)
(x∈R,a∈R,a是常數(shù)),且y=
OM
ON
(其中O為坐標(biāo)原點(diǎn)).
(1)求y關(guān)于x的函數(shù)關(guān)系式y(tǒng)=f(x);
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(3)若x∈[0,
π
2
]
時(shí),f(x)的最大值為4,求a的值.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知⊙M經(jīng)過(guò)點(diǎn)F1(0,-c),F(xiàn)2(0,c),A(
3
c,0)三點(diǎn),其中c>0.
(1)求⊙M的標(biāo)準(zhǔn)方程(用含c的式子表示);
(2)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)(其中a2-b2=c2)的左、右頂點(diǎn)分別為D、B,⊙M與x軸的兩個(gè)交點(diǎn)分別為A、C,且A點(diǎn)在B點(diǎn)右側(cè),C點(diǎn)在D點(diǎn)右側(cè),求橢圓離心率的取值范圍.

查看答案和解析>>

 

一、

    <s id="quejn"></s>
  1. 20080506

    題號(hào)

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    選項(xiàng)

    A

    D

    C

    A

    A

    C

    B

    B

    C

    D

    C

    B

    二、填空題:

    13.-1    14.5   15.    16.③④      

    三、解答題:

    17.解:(Ⅰ) =……1分

    =……2分

      ……3分

     

    ……4分

      .……6分

    (Ⅱ)在中, ,

    ……7分

    由正弦定理知:……8分

    =.    ……10分

    18.解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

    6ec8aac122bd4f6e                                     ………………4分

    (Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

    6ec8aac122bd4f6e                                      …………9分

    ξ的分布列為:

    ξ

    10

    8

    6

    4

    P

    3/28

    31/56

    9/28

    1/56

    6ec8aac122bd4f6e                                …………12分

    19. 解法一:

       (1)設(shè)于點(diǎn),∵,,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

     由已知得,,

    ,二面角的大小為.…6分

       (2)當(dāng)中點(diǎn)時(shí),有平面.

    證明:取的中點(diǎn)連結(jié)、,則

    ,故平面即平面.

    ,∴,又平面

    .…………………………………………12分

    解法二:以D為原點(diǎn),以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,則

    ,,.…………2分

       (1),

    ,設(shè)平面的一個(gè)法向量

    ,則.

    設(shè)平面的一個(gè)法向量為,則.

    ,∴二面角的大小為. …………6分

       (2)令

     

    由已知,,要使平面,只須,即則有

    ,得當(dāng)中點(diǎn)時(shí),有平面.…12分

    20解:(I)f(x)定義域?yàn)?一1,+∞),                        …………………2分

        由得x<一1或x>1/a,由得一1<x<1/a,

         f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

    (Ⅱ)由(I)可知:

        ①當(dāng)0<a≤1/2時(shí),,f(x)在[1,2]上為減函數(shù),

        ………………………………8分

        ②當(dāng)1/2<a<1時(shí),f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

        …………………………………10分

        ③當(dāng)a≥1時(shí),f(x)在[1,2]上為增函數(shù),

        …………………………………12分

    21.解:(1),設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,所以

    所以

    由條件,得,又因?yàn)槭堑缺龋?/p>

    所以,所以,所求動(dòng)點(diǎn)的軌跡方程 ……………………6分

       (2)設(shè)直線l的方程為,

    聯(lián)立方程組得,

    , …………………………………………8分

    , ………………………………………………10分

    直線RQ的方程為,

      …………………………………………………………………12分

    22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

    ,

            兩式相減得.                --------------------3分

            當(dāng)時(shí),,

    .            --------------------------------------------------4分

    (Ⅱ)∵,

    ,

           ,

      ,

      ………

     

    以上各式相加得

    .

      ,∴.      ---------------------------6分

    .     -------------------------------------------------7分

    ,

    .

    .

             =.

    .  -------------------------------------------------------------9分

    (3)=

                        =4+

       =

                        .  -------------------------------------------10分

            ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

            ①當(dāng)時(shí),成立.

            ②假設(shè)時(shí),命題成立即,

            那么,當(dāng)時(shí),成立.

            由①、②可得,對(duì)于都有成立.

           ∴.       ∴.--------------------12分

     


    同步練習(xí)冊(cè)答案