1.已知集合M={直線}.集合N={雙曲線}.則集合M與N交集中的元素個(gè)數(shù)為 ( )A. 0 B. 1 C. 2 D.不能確定 查看更多

 

題目列表(包括答案和解析)

已知矩陣M=
1
0
0
-1
,N=
1
0
2
-3
,求直線y=2x+1在矩陣MN對(duì)應(yīng)變換的作用下所得到的直線方程.

查看答案和解析>>

已知矩陣M=
10
0-1
,N=
12
0-3
,求直線y=2x+1在矩陣MN的作用下變換所得到的直線方程.

查看答案和解析>>

已知點(diǎn)M(a,b)與N關(guān)于x軸對(duì)稱(chēng),點(diǎn)P與點(diǎn)N關(guān)于y軸對(duì)稱(chēng),點(diǎn)Q與點(diǎn)P關(guān)于直線x+y=0對(duì)稱(chēng),則點(diǎn)Q的坐標(biāo)為(    )

A.(a,b)            B.(b,a)            C.(-a,-b)              D.(-b,-a)

查看答案和解析>>

已知兩點(diǎn)M(-5,0)和N(5,0),若直線上存在點(diǎn)P使?|PM|?-|PN|=6,則稱(chēng)該直線為“B型直線”.給出下列直線:①y=x+1;②y=2;③y=x;④y=2x+1.其中為“B型直線”的是______________(填上所有正確的序號(hào)).

查看答案和解析>>

(08年豐臺(tái)區(qū)統(tǒng)一練習(xí)一理)(13分)

 在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1, 0)、B(1, 0), 動(dòng)點(diǎn)C滿足條件:△ABC的周長(zhǎng)為

.記動(dòng)點(diǎn)C的軌跡為曲線W.

(Ⅰ)求W的方程;

(Ⅱ)經(jīng)過(guò)點(diǎn)(0, )且斜率為k的直線l與曲線W 有兩個(gè)不同的交點(diǎn)PQ,

k的取值范圍;

       (Ⅲ)已知點(diǎn)M),N(0, 1),在(Ⅱ)的條件下,是否存在常數(shù)k,使得向量

共線?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

 

一、

<samp id="rdgce"><optgroup id="rdgce"></optgroup></samp>
      <center id="rdgce"><fieldset id="rdgce"><code id="rdgce"></code></fieldset></center>

      20080506

      題號(hào)

      1

      2

      3

      4

      5

      6

      7

      8

      9

      10

      11

      12

      選項(xiàng)

      A

      D

      C

      A

      A

      C

      B

      B

      C

      D

      C

      B

      二、填空題:

      13.-1    14.5   15.    16.③④      

      三、解答題:

      17.解:(Ⅰ) =……1分

      =……2分

        ……3分

       

      ……4分

        .……6分

      (Ⅱ)在中,

      ……7分

      由正弦定理知:……8分

      =.    ……10分

      18.解:(Ⅰ)選取的5只恰好組成完整“奧運(yùn)吉祥物”的概率

      6ec8aac122bd4f6e                                     ………………4分

      (Ⅱ)6ec8aac122bd4f6e                              …………………5分            6ec8aac122bd4f6e

      6ec8aac122bd4f6e                                      …………9分

      ξ的分布列為:

      ξ

      10

      8

      6

      4

      P

      3/28

      31/56

      9/28

      1/56

      6ec8aac122bd4f6e                                …………12分

      19. 解法一:

         (1)設(shè)于點(diǎn),∵,,∴平面. 作,連結(jié),則,是二面角的平面角.…3分

       由已知得,,

      ,,二面角的大小為.…6分

         (2)當(dāng)中點(diǎn)時(shí),有平面.

      證明:取的中點(diǎn)連結(jié)、,則,

      ,故平面即平面.

      ,∴,又平面

      .…………………………………………12分

      解法二:以D為原點(diǎn),以DA、DC、DP為x軸、y軸、z軸建立空間直角坐標(biāo)系,則

      ,,.…………2分

         (1),

      ,設(shè)平面的一個(gè)法向量

      ,則.

      設(shè)平面的一個(gè)法向量為,則.

      ,∴二面角的大小為. …………6分

         (2)令

       

      由已知,,要使平面,只須,即則有

      ,得,當(dāng)中點(diǎn)時(shí),有平面.…12分

      20解:(I)f(x)定義域?yàn)?一1,+∞),                        …………………2分

          由得x<一1或x>1/a,由得一1<x<1/a,

           f(x)的單調(diào)增區(qū)間為(1/a,+∞),單調(diào)減區(qū)間為(一1,1/a)…………………6分

      (Ⅱ)由(I)可知:

          ①當(dāng)0<a≤1/2時(shí),,f(x)在[1,2]上為減函數(shù),

          ………………………………8分

          ②當(dāng)1/2<a<1時(shí),f(x)在[1,1/a]上為減函數(shù),在(1/a,2]上為增函數(shù),

          …………………………………10分

          ③當(dāng)a≥1時(shí),f(x)在[1,2]上為增函數(shù),

          …………………………………12分

      21.解:(1),設(shè)動(dòng)點(diǎn)P的坐標(biāo)為,所以

      所以

      由條件,得,又因?yàn)槭堑缺龋?/p>

      所以,所以,所求動(dòng)點(diǎn)的軌跡方程 ……………………6分

         (2)設(shè)直線l的方程為,

      聯(lián)立方程組得,

      , …………………………………………8分

      , ………………………………………………10分

      直線RQ的方程為,

        …………………………………………………………………12分

      22. 解:(Ⅰ)由題意,                -----------------------------------------------------2分

      ,

              兩式相減得.                --------------------3分

              當(dāng)時(shí),,

      .            --------------------------------------------------4分

      (Ⅱ)∵

      ,

             ,

        ,

        ………

       

      以上各式相加得

      .

        ,∴.      ---------------------------6分

      .     -------------------------------------------------7分

      ,

      .

      .

               =.

      .  -------------------------------------------------------------9分

      (3)=

                          =4+

         =

                          .  -------------------------------------------10分

              ,  ∴ 需證明,用數(shù)學(xué)歸納法證明如下:

              ①當(dāng)時(shí),成立.

              ②假設(shè)時(shí),命題成立即,

              那么,當(dāng)時(shí),成立.

              由①、②可得,對(duì)于都有成立.

             ∴.       ∴.--------------------12分

       


      同步練習(xí)冊(cè)答案