在長(zhǎng)方體中.為上任意一點(diǎn).則一定有 查看更多

 

題目列表(包括答案和解析)

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E、F、G分別是AB,BC,B1C1的中點(diǎn),則下列說(shuō)法正確的是     (寫(xiě)出所有正確命題的編號(hào)).
①P在直線(xiàn)EF上運(yùn)動(dòng)時(shí),GP始終與平面AA1C1C平行;
②點(diǎn)Q在直線(xiàn)BC1上運(yùn)動(dòng)時(shí),三棱錐A-D1QC的體積不變;
③點(diǎn)M是平面A1B1C1D1上到點(diǎn)。亢停嚯x相等的點(diǎn),則點(diǎn)M的軌跡是一條直線(xiàn);
④以正方體ABCD-A1B1C1D1的任意兩個(gè)頂點(diǎn)為端點(diǎn)連一條線(xiàn)段,其中與棱AA1異面的有10條;
⑤點(diǎn)P是平面ABCD內(nèi)的動(dòng)點(diǎn),且點(diǎn)P到直線(xiàn)A1D1的距離與點(diǎn)P到點(diǎn)E的距離的平方差為3,則點(diǎn)P的軌跡為拋物線(xiàn).

查看答案和解析>>

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E、F、G分別是AB,BC,B1C1的中點(diǎn),則下列說(shuō)法正確的是     (寫(xiě)出所有正確命題的編號(hào)).
①P在直線(xiàn)EF上運(yùn)動(dòng)時(shí),GP始終與平面AA1C1C平行;
②點(diǎn)Q在直線(xiàn)BC1上運(yùn)動(dòng)時(shí),三棱錐A-D1QC的體積不變;
③點(diǎn)M是平面A1B1C1D1上到點(diǎn)。亢停嚯x相等的點(diǎn),則點(diǎn)M的軌跡是一條直線(xiàn);
④以正方體ABCD-A1B1C1D1的任意兩個(gè)頂點(diǎn)為端點(diǎn)連一條線(xiàn)段,其中與棱AA1異面的有10條;
⑤點(diǎn)P是平面ABCD內(nèi)的動(dòng)點(diǎn),且點(diǎn)P到直線(xiàn)A1D1的距離與點(diǎn)P到點(diǎn)E的距離的平方差為3,則點(diǎn)P的軌跡為拋物線(xiàn).

查看答案和解析>>

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為2,E、F、G分別是AB,BC,B1C1的中點(diǎn),則下列說(shuō)法正確的是________ (寫(xiě)出所有正確命題的編號(hào)).
①P在直線(xiàn)EF上運(yùn)動(dòng)時(shí),GP始終與平面AA1C1C平行;
②點(diǎn)Q在直線(xiàn)BC1上運(yùn)動(dòng)時(shí),三棱錐A-D1QC的體積不變;
③點(diǎn)M是平面A1B1C1D1上到點(diǎn)。亢停嚯x相等的點(diǎn),則點(diǎn)M的軌跡是一條直線(xiàn);
④以正方體ABCD-A1B1C1D1的任意兩個(gè)頂點(diǎn)為端點(diǎn)連一條線(xiàn)段,其中與棱AA1異面的有10條;
⑤點(diǎn)P是平面ABCD內(nèi)的動(dòng)點(diǎn),且點(diǎn)P到直線(xiàn)A1D1的距離與點(diǎn)P到點(diǎn)E的距離的平方差為3,則點(diǎn)P的軌跡為拋物線(xiàn).

查看答案和解析>>

如圖,在棱長(zhǎng)為的正方體中,的中點(diǎn),上任意一點(diǎn),上任意兩點(diǎn),且的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是(  )

A.點(diǎn)到平面的距離
B.直線(xiàn)與平面所成的角
C.三棱錐的體積
D.二面角的大小

查看答案和解析>>

如圖,在棱長(zhǎng)為的正方體中,的中點(diǎn),上任意一點(diǎn),上任意兩點(diǎn),且的長(zhǎng)為定值,則下面的四個(gè)值中不為定值的是(   )

A.點(diǎn)到平面的距離

B.直線(xiàn)與平面所成的角

C.三棱錐的體積

D.二面角的大小

 

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

二、填空題:

11. ;      12. ;          13.

14. ;            15. ;        16. ③ ④ .

三、解答題:

17.解:(1)在中,由,得,  又由正弦定理: 得:.                                     ……………………4分

(2)由余弦定理:得:,

,解得(舍去),所以.       ……8分

 

所以,

.                                      …………………12分

18.解:(1)依題意,雙曲線(xiàn)的方程可設(shè)為:、,

                解之得:,

所以雙曲線(xiàn)的方程為:.                  ……………………6分

(2)設(shè)、,直線(xiàn)軸交于點(diǎn),此點(diǎn)即為雙曲線(xiàn)的右焦點(diǎn),由   消去,得,

此方程的,,

所以兩點(diǎn)分別在左、右支上,不妨設(shè)在左支、在右支上   ………9分

則由第二定義知:,     …………11分

所以

,即. ………14分

(亦可求出、的坐標(biāo),用兩點(diǎn)間距離公式求.)

 

19.(1)當(dāng)點(diǎn)的中點(diǎn)時(shí),與平面平行.

∵在中,、分別為的中點(diǎn)

   又平面,而平面 

    ∴∥平面.                              ……………………4分

 

(2)證明(略證):易證平面,又在平面內(nèi)的射影,,∴.                         ……………………8分

 (3)∵與平面所成的角是,∴,.

過(guò),連,則.     …………………10分

易知:,,設(shè),則,

中,,

.                 ………14分

 

 

 

解法二:(向量法)(1)同解法一

(2)建立圖示空間直角坐標(biāo)系,則,                          ,.

設(shè),則

      ∴   (本小題4分)

(3)設(shè)平面的法向量為,由,

得:,

依題意,∴

.                             (本小題6分)

 

20.解:(1)

∴可設(shè),

因而   ①

  得          ②

∵方程②有兩個(gè)相等的根,

,即  解得 

由于,(舍去),將 代入 ①  得 的解析式.                                …………………6分

(2)=

在區(qū)間內(nèi)單調(diào)遞減,

上的函數(shù)值非正,

由于,對(duì)稱(chēng)軸,故只需,注意到,∴,得(舍去)

故所求a的取值范圍是.                     …………………11分

 (3)時(shí),方程僅有一個(gè)實(shí)數(shù)根,即證方程 僅有一個(gè)實(shí)數(shù)根.令,由,得,易知,上遞增,在上遞減,的極大值,的極小值,故函數(shù)的圖像與軸僅有一個(gè)交點(diǎn),∴時(shí),方程僅有一個(gè)實(shí)數(shù)根,得證.                                    ……………………16分

 

21.解:(1),                        ……………………1分

=.                      ……………………4分

(2),           ……………………5分

,………7分

∴數(shù)列為首項(xiàng),為公比的等比數(shù)列.       ……………………8分

(3)由(2)知, Sn =, ……………9分

=∵0<<1,∴>0,,0<<1,,

,                                     ……………………11分

又當(dāng)時(shí),,∴, ……………………13分

<.……14分

 


同步練習(xí)冊(cè)答案