已知.則f(-9)等于A.-1 B.0 C.1 D.3 查看更多

 

題目列表(包括答案和解析)

下列說法:
①用“輾轉(zhuǎn)相除法”求得243,135 的最大公約數(shù)是9;
②命題p:?x∈R,,則¬p是;
③已知條件p:x>1,y>1,條件q:x+y>2,xy>1,則條件p是條件q成立的充分不必要條件;
④若,則
⑤已知,則f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時(shí),;
⑥直線l:y=kx+1與雙曲線C:x2-y2=1的左支有且僅有一個(gè)公共點(diǎn),則k的取值范圍是-1<k<1或
其中正確的命題的序號(hào)為   

查看答案和解析>>

已知函數(shù)f(x)+9≥0恒成立,則實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

下列說法:
①用“輾轉(zhuǎn)相除法”求得243,135 的最大公約數(shù)是9;
②命題p:?x∈R,數(shù)學(xué)公式,則?p是數(shù)學(xué)公式
③已知條件p:x>1,y>1,條件q:x+y>2,xy>1,則條件p是條件q成立的充分不必要條件;
④若數(shù)學(xué)公式,則數(shù)學(xué)公式;
⑤已知數(shù)學(xué)公式,則f(n)中共有n2-n+1項(xiàng),當(dāng)n=2時(shí),數(shù)學(xué)公式;
⑥直線l:y=kx+1與雙曲線C:x2-y2=1的左支有且僅有一個(gè)公共點(diǎn),則k的取值范圍是-1<k<1或數(shù)學(xué)公式
其中正確的命題的序號(hào)為________.

查看答案和解析>>

已知,則f(3)為( )
A.2
B.3
C.4
D.5

查看答案和解析>>

已知函數(shù)則f(2+log23)的值為   

查看答案和解析>>

一、選擇題(每小題5分,共60分)

1-12BDCBC        CCDBA         AC

二、填空題(每題4分,共16分)

13、          14、        15、1     16、15

三、解答題(共74分)

17、(本小題滿分12分)

(1)

函數(shù)的最小正周期是

當(dāng)時(shí),即時(shí),函數(shù)有最大值1。

(2)由,得

當(dāng)時(shí),取得,函數(shù)的單調(diào)遞減區(qū)間是

(3)

18、(本小題滿分12分)

(1)由題意知:,∴=1

①,∴當(dāng) n≥2時(shí),

①-②得:

>0,∴,(n≥2且

是以=1為首項(xiàng),d=1為公差的等差數(shù)列

=n

(2)

是以為首項(xiàng),為公比的等比數(shù)列

,∴

                        ①

           ②

①-②得

19、(本小題滿分12分)

(1)當(dāng)時(shí),

上是增函數(shù)

上是增函數(shù)

∴當(dāng)時(shí),

(2)上恒成立

上恒成立

上恒成立

上是減函數(shù),

∴當(dāng)時(shí),

,

∴所求實(shí)數(shù)a的取值范圍為

20、(本小題滿分12分)

此時(shí)

,∴,∴

∴實(shí)數(shù)a不存在

21、(本小題滿分12分)

(1)若方程表示圓,則,∴

(2)設(shè)M、N的坐標(biāo)分別為、

,得

,∴,∴    ①

,得

代入①得,

(3)設(shè)MN為直徑的圓的方程為,

∴所求圓的方程為

22、(本小題滿分14分)

(1)當(dāng)時(shí),

設(shè)x為其不動(dòng)點(diǎn),則,即

或2,即的不動(dòng)點(diǎn)是-1,2

(2)由

由題意知,此方程恒有兩個(gè)相異的實(shí)根

對(duì)任意的恒成立

,∴

(3)設(shè),則直線AB的斜率,∴

由(2)知AB中點(diǎn)M的坐標(biāo)為

又∵M(jìn)在線段AB的垂直平分線上,∴

(當(dāng)且僅當(dāng)時(shí)取等號(hào))

∴實(shí)數(shù)b的取值范圍為

 

 


同步練習(xí)冊(cè)答案