15..由可得等差數(shù)列的通項公式為2.-.10),由題意.三次取數(shù)相當(dāng)于三次獨立重復(fù)試驗.在每次試驗中取得正數(shù)的概率為.取得負(fù)數(shù)的概率為.在三次取數(shù)中.取出的數(shù)恰好為兩個正數(shù)和一個負(fù)數(shù)的概率為 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列{an}的通項公式為an=
nn+a
(n,a∈N*)

(1)若a1,a3,a15成等比數(shù)列,求a的值;
(2)是否存在k(k≥3且k∈N),使得a1,a2,ak成等差數(shù)列,若存在,求出常數(shù)a的值;若不存在,請說明理由;
(3)求證:數(shù)列中的任意一項an總可以表示成數(shù)列中其它兩項之積.

查看答案和解析>>

已知數(shù)列{an}的通項公式為數(shù)學(xué)公式
(1)若a1,a3,a15成等比數(shù)列,求a的值;
(2)是否存在k(k≥3且k∈N),使得a1,a2,ak成等差數(shù)列,若存在,求出常數(shù)a的值;若不存在,請說明理由;
(3)求證:數(shù)列中的任意一項an總可以表示成數(shù)列中其它兩項之積.

查看答案和解析>>

已知數(shù)列{an}的通項公式為
(1)若a1,a3,a15成等比數(shù)列,求a的值;
(2)是否存在k(k≥3且k∈N),使得a1,a2,ak成等差數(shù)列,若存在,求出常數(shù)a的值;若不存在,請說明理由;
(3)求證:數(shù)列中的任意一項an總可以表示成數(shù)列中其它兩項之積.

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項公式

(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即,

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價于,

當(dāng)時,;當(dāng)時,

,所以猜想,的最小值為.     …………8分

下證不等式對任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時,,成立.

假設(shè)當(dāng)時,不等式成立,

當(dāng)時,, …………10分

只要證  ,只要證 

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

方法二:單調(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項公式,        …………10分

,    …………12分

所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>

(本小題滿分12分)

數(shù)列滿足是常數(shù).

   (1)數(shù)列是否可能為等差數(shù)列?若可能,求出它的通項公式;若不可能,說明理由;

   (2)求的取值范圍,使得存在正整數(shù),當(dāng)時總有

查看答案和解析>>


同步練習(xí)冊答案