(2)若方程恰好有兩個不同的根.求的解析式, 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)圖象上一點處的切線方程為.

(1)求的值;

(2)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));(3)令,若的圖象與軸交于(其中),的中點為,求證:處的導(dǎo)數(shù)

 

查看答案和解析>>

. (滿分12分)

已知函數(shù)圖象上一點處的切線方程

1)求的值;

2)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

3)令,若的圖象與軸交于(其中),的中點為,求證:處的導(dǎo)數(shù)

 

查看答案和解析>>

(本小題滿分14分)已知函數(shù)圖象上一點處的切線方程為

   (1)求的值;

   (2)若方程內(nèi)有兩個不等實根,求的取值范圍(其中為自然對數(shù)的底數(shù));

 

查看答案和解析>>

已知函數(shù)圖象上一點

的切線方程為y= -3x+2ln2+2.

(1)求a,b的值;

(2)若方程內(nèi)有兩個不等實根,求m的取值范圍(其

為自然對數(shù)的底數(shù));

 

查看答案和解析>>

已知函數(shù),(其中,)的圖像與軸的交點中,相鄰兩交點之間的距離為,且圖像上一個最低點為

(Ⅰ)求的解析式;

(Ⅱ)時,若方程恰好有兩個不同的根,,求的取值范圍及的值.

 

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

<form id="odn0i"></form>

20090508

(2)設(shè),則,

由正弦定理:,

所以兩個正三角形的面積和,…………8分

……………10分

,,

所以:………………………………………………………………12分

18.解:(1);……………………6分

(2)消費總額為1500元的概率是:……………………7分

消費總額為1400元的概率是:………8分

消費總額為1300元的概率是:

,…11分

所以消費總額大于或等于1300元的概率是;……………………12分

19.(1)證明:因為,所以平面

又因為,

平面,

平面平面;…………………4分

(2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

所以的長為所求,………………………………………………………………………6分

因為,所以為二面角的平面角,,

=1,

到平面的距離等于1;…………………………………………………………8分

(3)連接,由平面,得到,

所以是二面角的平面角,

,…………………………………………………………………11分

二面角大小是。……12分

20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

解得,所以,…………………3分

所以,

,

所以;…………………………………………………………………6分

(2),因為,所以數(shù)列是遞增數(shù)列,…8分

當且僅當時,取得最小值,

則:,

所以,即的取值范圍是!12分

21.解:(1)設(shè)點的坐標為,則點的坐標為,點的坐標為,

因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

(2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

 

…………………………………………7分

弦長為定值,則,即,

此時,……………………………………………………9分

所以當時,存在直線,截得的弦長為,

    當時,不存在滿足條件的直線!12分

22.解:(1)

,……2分

,

因為當時取得極大值,所以,

所以的取值范圍是:;………………………………………………………4分

(2)由下表:

0

0

遞增

極大值

遞減

極小值

遞增

………………………7分

畫出的簡圖:

依題意得:,

解得:,

所以函數(shù)的解析式是:

;……9分

(3)對任意的實數(shù)都有

依題意有:函數(shù)在區(qū)間

上的最大值與最小值的差不大于,

………10分

在區(qū)間上有:

,

的最大值是,

的最小值是,……13分

所以

的最小值是!14分

 

 


同步練習冊答案