A. B. C . D. 查看更多

 

題目列表(包括答案和解析)

10、在集合{a,b,c,d}上定義兩種運(yùn)算⊕和?如圖那么d?(a⊕c)=( 。

查看答案和解析>>

函數(shù)y=
ex+e-x
ex-e-x
的圖象大致為( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點,設(shè)向量
OA
=
a
OB
=
b
,其中
a
=(3,1),
b
=(1,3)
,若
OC
a
b
,且0≤μ≤λ≤1,那么C點所有可能的位置區(qū)域用陰影表示正確的是( 。
A、精英家教網(wǎng)
B、精英家教網(wǎng)
C、精英家教網(wǎng)
D、精英家教網(wǎng)

查看答案和解析>>

12、今年“3•15”,某報社做了一次關(guān)于“什么是新時代的雷鋒精神?”的調(diào)查,在A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,共回收1000份,因報道需要,再從回收的問卷中按單位分層抽取容量為150的樣本,若在B單位抽30份,則在D單位抽取的問卷是
60
份.

查看答案和解析>>

4、集合M={x|-2≤x≤2},N={y|0≤y≤2},給出下列四個圖形,其中能表示以M為定義域,N為值域的函數(shù)關(guān)系的是( 。

查看答案和解析>>

一、

C A CBC     A D AB D     B A

二、

13.5;   14.;     15. 36;      16.20

三、

17.解:(1)依題意得:

所以:,……4分

  • <dfn id="77hks"></dfn>
  • <mark id="77hks"><font id="77hks"></font></mark>

    20090508

    (2)設(shè),則,

    由正弦定理:,

    所以兩個正三角形的面積和,…………8分

    ……………10分

    ,,

    所以:………………………………………………………………12分

    18.解:(1);……………………6分

    (2)消費總額為1500元的概率是:……………………7分

    消費總額為1400元的概率是:………8分

    消費總額為1300元的概率是:

    ,…11分

    所以消費總額大于或等于1300元的概率是;……………………12分

    19.(1)證明:因為,所以平面

    又因為,

    平面,

    平面平面;…………………4分

    (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

    過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

    所以的長為所求,………………………………………………………………………6分

    因為,所以為二面角的平面角,,

    =1,

    到平面的距離等于1;…………………………………………………………8分

    (3)連接,由平面,,得到,

    所以是二面角的平面角,

    ,…………………………………………………………………11分

    二面角大小是!12分

    20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

    ,

    解得,所以,…………………3分

    所以,

    所以;…………………………………………………………………6分

    (2),因為,所以數(shù)列是遞增數(shù)列,…8分

    當(dāng)且僅當(dāng)時,取得最小值,

    則:,

    所以,即的取值范圍是!12分

    21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為,

    因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

    (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

    假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

     

    …………………………………………7分

    弦長為定值,則,即,

    此時,……………………………………………………9分

    所以當(dāng)時,存在直線,截得的弦長為,

        當(dāng)時,不存在滿足條件的直線。……………………………………………12分

    22.解:(1),

    ,……2分

    ,

    因為當(dāng)時取得極大值,所以

    所以的取值范圍是:;………………………………………………………4分

    (2)由下表:

    0

    0

    遞增

    極大值

    遞減

    極小值

    遞增

    ………………………7分

    畫出的簡圖:

    依題意得:

    解得:,

    所以函數(shù)的解析式是:

    ;……9分

    (3)對任意的實數(shù)都有

    依題意有:函數(shù)在區(qū)間

    上的最大值與最小值的差不大于,

    ………10分

    在區(qū)間上有:

    ,

    的最大值是,

    的最小值是,……13分

    所以

    的最小值是!14分

     

     


    同步練習(xí)冊答案