(2)設(shè)直線與曲線C交于點(diǎn)A.B.問在直線上是否存在于b無關(guān)的定點(diǎn)M.使得直線MA.MB關(guān)于直線對(duì)稱.若存在.求出點(diǎn)M的坐標(biāo).若不存在.請(qǐng)說明理由. 查看更多

 

題目列表(包括答案和解析)

已知曲線C上任一點(diǎn)P到直線x=1與點(diǎn)F(-1,0)的距離相等.
(1)求曲線C的方程;
(2)設(shè)直線y=x+b與曲線C交于點(diǎn)A,B,問在直線l:y=2上是否存在與b無關(guān)的定點(diǎn)M,使得直線MB與MA關(guān)于直線l對(duì)稱,若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知曲線C上任一點(diǎn)P到直線x=1與點(diǎn)F(-1,0)的距離相等.
(1)求曲線C的方程;
(2)設(shè)直線y=x+b與曲線C交于點(diǎn)A,B,問在直線l:y=2上是否存在與b無關(guān)的定點(diǎn)M,使得直線MB與MA關(guān)于直線l對(duì)稱,若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知曲線C上任一點(diǎn)P到直線x=1與點(diǎn)F(-1,0)的距離相等.
(1)求曲線C的方程;
(2)設(shè)直線y=x+b與曲線C交于點(diǎn)A,B,問在直線l:y=2上是否存在與b無關(guān)的定點(diǎn)M,使得直線MB與MA關(guān)于直線l對(duì)稱,若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知曲線C上任一點(diǎn)P到直線x=1與點(diǎn)F(-1,0)的距離相等.
(1)求曲線C的方程;
(2)設(shè)直線y=x+b與曲線C交于點(diǎn)A,B,問在直線l:y=2上是否存在與b無關(guān)的定點(diǎn)M,使得直線MB與MA關(guān)于直線l對(duì)稱,若存在,求出點(diǎn)M的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

(2011•洛陽(yáng)二模)已知點(diǎn)M(-5,0),F(xiàn)(1,0),點(diǎn)K滿足
MK
=2
KF
,P是平面內(nèi)一動(dòng)點(diǎn),且滿足|
PF
|•|
KF
|=
PK
FK

(1)求P點(diǎn)的軌跡C的方程;
(2)過點(diǎn)F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與曲線C相交于點(diǎn)A,B,l2與曲線C相交于點(diǎn)D,E,求四邊形ADBE的面積的最小值.

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

A

D

C

A

D

C

B

D

B

C

二、填空題:

13、    14、   15、等;  16、7

三、解答題

17、(1)由余弦定理:   又

    ∴

(2)∵A+B+C=   ∴

18、(1)  (2)

19、(1)AC=1,BC=2 ,AB= ,∴∴AC

又  平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC

又∵PA平面APC     ∴

(2)該幾何體的主試圖如下:

 

幾何體主試圖的面積為

     ∴   ∴

 

 

(3)取PC 的中點(diǎn)N,連接AN,由△PAC是邊長(zhǎng)為1的正三角形,可知

由(1)BC平面PAC,可知   ∴平面PCBM

20、(1)的最小值為

(2)a的取值范圍是

21、(1)曲線C的方程為

(2),存在點(diǎn)M(―1,2)滿足題意

22、(1)由于點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線

  因此,所以是等差數(shù)列

(2)由已知有  同理 

   

  

(3)由(2)得,則

由于  而

,從而

同理:……

以上個(gè)不等式相加得:

,從而

 

 

 

 


同步練習(xí)冊(cè)答案