題目列表(包括答案和解析)
(08年海淀區(qū)期中練習(xí)文)(14分)
已知函數(shù)的圖象是曲線,直線與曲線相切于點(diǎn)(1,3).
(I)求函數(shù)的解析式;
(II)求函數(shù)的遞增區(qū)間;
(III)求函數(shù)在區(qū)間上的最大值和最小值.
已知函數(shù)有兩個(gè)極值點(diǎn),且直線與曲線相切于點(diǎn)。
(1) 求和
(2) 求函數(shù)的解析式;
(3) 在為整數(shù)時(shí),求過點(diǎn)和相切于一異于點(diǎn)的直線方程
已知函數(shù)有兩個(gè)極值點(diǎn),且直線與曲線相切于點(diǎn)。
(1) 求和
(2) 求函數(shù)的解析式;
(3) 在為整數(shù)時(shí),求過點(diǎn)和相切于一異于點(diǎn)的直線方程
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
A
D
C
A
D
C
B
D
B
C
二、填空題:
13、 14、 15、等; 16、7
三、解答題
17、(1)由余弦定理: 又
∴ ∴
(2)∵A+B+C= ∴
∴
18、(1) (2)
19、(1)AC=1,BC=2 ,AB= ,∴∴AC
又 平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC
又∵PA平面APC ∴
(2)該幾何體的主試圖如下:
幾何體主試圖的面積為
∴ ∴
(3)取PC 的中點(diǎn)N,連接AN,由△PAC是邊長為1的正三角形,可知
由(1)BC平面PAC,可知 ∴平面PCBM
∴
20、(1)的最小值為
(2)a的取值范圍是
21、(1)曲線C的方程為
(2),存在點(diǎn)M(―1,2)滿足題意
22、(1)由于點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線上
則 因此,所以是等差數(shù)列
(2)由已知有得 同理
∴
∴
∴
(3)由(2)得,則
∴
∴
∴
由于 而
則,從而
同理:……
以上個(gè)不等式相加得:
即,從而
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com