已知直線平面.直線平面.給出下列命題:①,② 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=(x∈ R),給出下列命題:① f(x)不可能為偶函數(shù);② 當(dāng)f(0)=f(2)時(shí),f(x)的圖像必關(guān)于直線x=1對(duì)稱;③ 若a2-b≤0,則f(x)在區(qū)間[a,+∞)上是增函數(shù);④ f(x)有最小值b-a2,其中正確命題的序號(hào)是____________(將你認(rèn)為正確的命題的序號(hào)都填上).

查看答案和解析>>

(08年新建二中模擬) 已知函數(shù)fx)=,給出下列命題: ①fx)必是偶函數(shù);  ②當(dāng)f(0)=f(2)時(shí)f(x)的圖象必關(guān)于直線x=1對(duì)稱;③若,則fx)在區(qū)間[a,+)上是增函數(shù);④fx)有最大值。其中正確命題的序號(hào)是              。

查看答案和解析>>

定義全集U的子集P的特征函數(shù)fp(x)=
1,  x∈P
0,  x∈?UP
,這里?UP表示集合P在全集U的補(bǔ)集.已知P?U,Q?U,給出下列命題:其中正確的是( 。
①若P?Q,則對(duì)于任意x∈U,都有fP(x)≤fQ(x);
②對(duì)于任意x∈U,都有fCUp(x)=1-fp(x);
③對(duì)于任意x∈U,都有fP∩Q(x)=fp(x)?fQ(x);
④對(duì)于任意x∈U,都有fP∪Q(x)=fp(x)+fQ(x).
A、①②③B、①②④
C、①③④D、②③④

查看答案和解析>>

已知是定義域?yàn)?sub>的函數(shù),給出下列命題:

①若,則的極值點(diǎn);

②若,則函數(shù)是單調(diào)函數(shù);

③若為奇函數(shù),又為偶函數(shù),則;

④若,且處的切線與軸交于點(diǎn),

其中正確命題的序號(hào)是_________ (寫(xiě)出所有正確命題的序號(hào)).

查看答案和解析>>

已知m,n是兩條不重合的直線,α,β是兩個(gè)不重合的平面,給出下列命題:
①若m?β,α∥β,則m∥α;          ②若m∥β,α∥β,則m∥α;
③若m⊥α,β⊥α,m∥n,則n∥β;    ④若m⊥α,n⊥β,α∥β,則m∥n.
其中正確的結(jié)論有
①④
①④
.(請(qǐng)將所有正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

A

D

A

D

C

A

D

C

B

D

B

C

二、填空題:

13、    14、   15、等;  16、7

三、解答題

17、(1)由余弦定理:   又

    ∴

(2)∵A+B+C=   ∴

18、(1)  (2)

19、(1)AC=1,BC=2 ,AB= ,∴∴AC

又  平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC

又∵PA平面APC     ∴

(2)該幾何體的主試圖如下:

 

幾何體主試圖的面積為

     ∴   ∴

 

 

(3)取PC 的中點(diǎn)N,連接AN,由△PAC是邊長(zhǎng)為1的正三角形,可知

由(1)BC平面PAC,可知   ∴平面PCBM

20、(1)的最小值為

(2)a的取值范圍是

21、(1)曲線C的方程為

(2),存在點(diǎn)M(―1,2)滿足題意

22、(1)由于點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線

  因此,所以是等差數(shù)列

(2)由已知有  同理 

   

  

(3)由(2)得,則

由于  而

,從而

同理:……

以上個(gè)不等式相加得:

,從而

 

 

 

 


同步練習(xí)冊(cè)答案