題目列表(包括答案和解析)
函數(shù)在同一個周期內(nèi),當(dāng) 時,取最大值1,當(dāng)時,取最小值。
(1)求函數(shù)的解析式
(2)函數(shù)的圖象經(jīng)過怎樣的變換可得到的圖象?
(3)若函數(shù)滿足方程求在內(nèi)的所有實數(shù)根之和.
【解析】第一問中利用
又因
又 函數(shù)
第二問中,利用的圖象向右平移個單位得的圖象
再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到的圖象,
第三問中,利用三角函數(shù)的對稱性,的周期為
在內(nèi)恰有3個周期,
并且方程在內(nèi)有6個實根且
同理,可得結(jié)論。
解:(1)
又因
又 函數(shù)
(2)的圖象向右平移個單位得的圖象
再由圖象上所有點的橫坐標變?yōu)樵瓉淼?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911025203078536/SYS201207091103422182387233_ST.files/image020.png">.縱坐標不變,得到的圖象,
(3)的周期為
在內(nèi)恰有3個周期,
并且方程在內(nèi)有6個實根且
同理,
故所有實數(shù)之和為
(本小題滿分12分)若函數(shù)在區(qū)間[]上的最大值為6,
(1)求常數(shù)m的值
(2)作函數(shù)關(guān)于y軸的對稱圖象得函數(shù)的圖象,再把的圖象向右平移個單位得的圖象,求函數(shù)的單調(diào)遞減區(qū)間.
一、選擇題:
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
A
D
C
D
C
A
B
C
B
D
B
C
二、填空題:
13、 14、8 15、等; 16、7
三、解答題
17、(1)由余弦定理: 又
∴ ∴
(2)∵A+B+C= ∴
∴
18、(1)周銷售量為2噸,3噸,4噸的頻率分別為0.2,0.5,和0.3。
(2)可能的值為8,10,12,14,16
8
10
12
14
16
P
0.04
0.2
0.37
0.3
0.09
則的分布列為
∴(千元)
19、(1)AC=1,BC=2 ,AB= ,∴∴AC
又 平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC
又∵PA平面APC ∴
(2)該幾何體的主試圖如下:
幾何體主試圖的面積為
∴ ∴
(3)取PC 的中點N,連接AN,由△PAC是邊長為1的正三角形,可知
由(1)BC平面PAC,可知 ∴平面PCBM
∴
20、(1)要使得不等式能成立,只需
∴
∴,故實數(shù)m的最小值為1
(2)由得
令 ∵,列表如下:
x
0
(0,1)
1
(1,2)
2
0
1
減函數(shù)
增函數(shù)
3-2ln3
∴
21、(1)曲線C的方程為
(2),存在點M(―1,2)滿足題意
22、(1)由于點B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線上
則 因此,所以是等差數(shù)列
(2)由已知有得 同理
∴
∴
∴
(3)由(2)得,則
∴
∴
∴
由于 而
則,從而
同理:……
以上個不等式相加得:
即,從而
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com