(III)若點(diǎn)A在第一象限.證明:當(dāng) 查看更多

 

題目列表(包括答案和解析)

(2012•河南模擬)在平面直角坐標(biāo)系xOy中,動點(diǎn)P到兩點(diǎn)(0,-
3
),(0,
3
)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,已知直線y=kx+l與C交于A、B兩點(diǎn).
(I)寫出C的方程;
(Ⅱ)若以AB為直徑的圓過原點(diǎn)0,求k的值;
(Ⅲ)若點(diǎn)A在第一象限,證明:當(dāng)k>0時,恒有|OA|>|OB|.

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,點(diǎn)P到兩點(diǎn)F1(0,-
3
)
、F2(0,
3
)
的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與曲線C交于A、B兩點(diǎn).
(1)求出曲線C的方程;
(2)若k=1,求△AOB的面積;
(3)若點(diǎn)A在第一象限,證明:當(dāng)k>0時,恒有|
OA
|>|
OB
|

查看答案和解析>>

在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,-
3
),(0,
3
)
的距離之和為4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若
OA
OB
,求k的值;
(3)若點(diǎn)A在第一象限,證明:當(dāng)k>0時,恒有|
OA
|>|
OB
|

查看答案和解析>>

在平面直角坐標(biāo)系xoy中,動點(diǎn)P到定點(diǎn)(0,
3
)距離與到定直線:y=
4
3
3
的距離之比為
3
2
.設(shè)動點(diǎn)P的軌跡為C.
(1)寫出C的方程;
(2)設(shè)直線y=kx+1與交于A,B兩點(diǎn),當(dāng)|
AB
|=
8
2
5
時,求實數(shù)k
的值.
(3)若點(diǎn)A在第一象限,證明:當(dāng)k>0時,恒有|
OA
|>|
OB
|.

查看答案和解析>>

在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若,求k的值;
(3)若點(diǎn)A在第一象限,證明:當(dāng)k>0時,恒有

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經(jīng)出的四個選項中,只有一項是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個小題,每小題5分,共20分。將符合題意的答案填在題后的橫線上)

13.2   14.70  15.  16.

三、解答題:本大題共6個小題,共70分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設(shè)通曉英語的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人!4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說明:其他解法請酌情給分。

<pre id="2ff45"><font id="2ff45"></font></pre>

       (I)

           AD為PD在平面ABC內(nèi)的射影。

           又點(diǎn)E、F分別為AB、AC的中點(diǎn),

          

           在中,由于AB=AC,故

           平面PAD……4分

       (II)設(shè)EF與AD相交于點(diǎn)G,連接PG。

           平面PAD,dm PAD,交線為PG,

           過A做AO平面PEF,則O在PG上,

           所以線段AO的長為點(diǎn)A到平面PEF的距離

           在

          

           即點(diǎn)A到平面PEF的距離為…………8分

           說 明:該問還可以用等體積轉(zhuǎn)化法求解,請根據(jù)解答給分。

       (III)

           平面PAC。

           過A做,垂足為H,連接EH。

           則

           所以為二面角E―PF―A的一個平面角。

           在

          

           即二面角E―PF―A的正切值為

           …………12分

           解法二:

          

    AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標(biāo)系,

           則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(0,2,0),P(0,0,2)……2分

           且

          

          

           平面PAD

       (II)為平面PEF的一個法向量,

           則

           令…………6分

           故點(diǎn)A到平面PEF的距離為:

          

           所以點(diǎn)A到平面PEF的距離為…………8分

       (III)依題意為平面PAF的一個法向量,

           設(shè)二面角E―PF―A的大小為(由圖知為銳角)

           則,…………10分

           即二面角E―PF―A的大小…………12分

    20.解:(I)依題意有:  ①

           所以當(dāng)  ②……2分

           ①-②得:化簡得:

          

          

          

           所以數(shù)列是以2為公差的等差數(shù)列!4分

           故…………5分

           設(shè)

           是公比為64的等比數(shù)列

          

           …………8分

       (II)……9分

           …………10分

           …………11分

           …………12分

    21.解:(I)設(shè),則依題意有:

          

           故曲線C的方程為…………4分

           注:若直接用

           得出,給2分。

       (II)設(shè),其坐標(biāo)滿足

          

           消去…………※

           故…………5分

          

           而

          

           化簡整理得…………7分

           解得:時方程※的△>0

          

       (III)

          

          

          

           因為A在第一象限,故

           由

           故

           即在題設(shè)條件下,恒有…………12分

    22.解:(I)…………3分

           處的切線互相平行

           …………5分

          

           …………6分

       (II)

          

           令

          

          

           當(dāng)

           是單調(diào)增函數(shù)!9分

          

          

          

           恒成立,

           …………10分

           值滿足下列不等式組

            ①,或

           不等式組①的解集為空集,解不等式組②得

           綜上所述,滿足條件的…………12分

     

     

     

     


    同步練習(xí)冊答案