A. B. C.1 D. 第Ⅱ卷 20090318 查看更多

 

題目列表(包括答案和解析)

是定義在上的奇函數(shù),當時,,則

A.B.C.1D.3

查看答案和解析>>

平面向量之間的夾角為,=(2,0),||=1,則||=(    )

A.          B.       C.4            D.12

 

查看答案和解析>>

在等差數(shù)列中,若,則的值為(    ) 

A. 6            B. 8            C. 10          D. 16

第Ⅱ卷    (非選擇題  共100分)

 

查看答案和解析>>

已知均為正數(shù),,則的最小值是            (    )

         A.            B.           C.             D.

第Ⅱ卷  (非選擇題  共90分)

二、填空題:本大題共4小題,每小題4分,共16分,將答案填在題中的橫線上。

查看答案和解析>>

 已知雙曲線E的中心為原點,F(xiàn)(3,0)是E的焦點,過F的直線l與E相交于A,B兩點,且AB的中點為N(-12,-15),則E的方程為

(A)    (B)     (C)    (D)

 

第Ⅱ卷

本卷包括必考題和選考題兩部分。第(13)題~第(21)題為必考題,每個試題考生都必須做答。第(22)題~第(24)題為選考題,考生根據(jù)要求做答。

 

查看答案和解析>>

 

一、選擇題(本大題12小題,每小題5分,共60分。在每小題經(jīng)出的四個選項中,只有一項是符合題目要求的。))

1―5DCBAC  6―10BCADB  11―12BB

二、填空題(本大題共4個小題,每小題5分,共20分。將符合題意的答案填在題后的橫線上)

13.2   14.70  15.  16.

三、解答題:本大題共6個小題,共70分。解答應寫出文字說明,證明過程或演算步驟。

17.解:(I)…………4分

      

       …………6分

   (II)

      

               

       …………8分

      

      

       …………10分

18.解:(I)設通曉英語的有人,

       且…………1分

       則依題意有:

       …………3分

       所以,這組志愿者有人。…………4分

   (II)所有可能的選法有種…………5分

       A被選中的選法有種…………7分

       A被選中的概率為…………8分

   (III)用N表示事件“B,C不全被選中”,則表示事件“B,C全被選中”……10分

       則…………11分

       所以B和C不全被選中的概率為……12分

       說明:其他解法請酌情給分。

   (I),

       AD為PD在平面ABC內(nèi)的射影。

       又點E、F分別為AB、AC的中點,

      

       在中,由于AB=AC,故

       平面PAD……4分

   (II)設EF與AD相交于點G,連接PG。

       平面PAD,dm PAD,交線為PG,

       過A做AO平面PEF,則O在PG上,

       所以線段AO的長為點A到平面PEF的距離

       在

      

       即點A到平面PEF的距離為…………8分

       說 明:該問還可以用等體積轉(zhuǎn)化法求解,請根據(jù)解答給分。

   (III)

       平面PAC。

       過A做,垂足為H,連接EH。

       則

       所以為二面角E―PF―A的一個平面角。

       在

      

       即二面角E―PF―A的正切值為

       …………12分

       解法二:

      

AB、AC、AP兩兩垂直,建立如圖所示空間直角坐標系,

       則A(0,0,0),E(2,0,0),D(2,2,0),F(xiàn)(0,2,0),P(0,0,2)……2分

      <menuitem id="le6kr"><fieldset id="le6kr"><object id="le6kr"></object></fieldset></menuitem>

             且

            

            

             平面PAD

         (II)為平面PEF的一個法向量,

             則

             令…………6分

             故點A到平面PEF的距離為:

            

             所以點A到平面PEF的距離為…………8分

         (III)依題意為平面PAF的一個法向量,

             設二面角E―PF―A的大小為(由圖知為銳角)

             則,…………10分

             即二面角E―PF―A的大小…………12分

      20.解:(I)依題意有:  ①

             所以當  ②……2分

             ①-②得:化簡得:

            

            

            

             所以數(shù)列是以2為公差的等差數(shù)列!4分

             故…………5分

             設

             是公比為64的等比數(shù)列

            

             …………8分

         (II)……9分

             …………10分

             …………11分

             …………12分

      21.解:(I)設,則依題意有:

            

             故曲線C的方程為…………4分

             注:若直接用

             得出,給2分。

         (II)設,其坐標滿足

            

             消去…………※

             故…………5分

            

             而

            

             化簡整理得…………7分

             解得:時方程※的△>0

            

         (III)

            

            

            

             因為A在第一象限,故

             由

             故

             即在題設條件下,恒有…………12分

      22.解:(I)…………3分

             處的切線互相平行

             …………5分

            

             …………6分

         (II)

            

             令

            

            

             當

             是單調(diào)增函數(shù)!9分

            

            

            

             恒成立,

             …………10分

             值滿足下列不等式組

              ①,或

             不等式組①的解集為空集,解不等式組②得

             綜上所述,滿足條件的…………12分

       

       

       

       


      同步練習冊答案