過作交于,交于,另一個(gè)與 查看更多

 

題目列表(包括答案和解析)

如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)能構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).例如:矩形ABCD中,點(diǎn)C與A、B兩點(diǎn)可構(gòu)成直角三角形ABC,則稱點(diǎn)C為A、B兩點(diǎn)的勾股點(diǎn).同樣,點(diǎn)D也是A、B兩點(diǎn)的勾股點(diǎn).

(1)在矩形ABCD中,AB=12,BC=6,邊CD上A,B兩點(diǎn)的勾股點(diǎn)的個(gè)數(shù)為
3
3
個(gè);
(2)如圖1,矩形ABCD中,AB=12,BC=6,DP=4,DM=8,AN=5.過點(diǎn)P作直線l平行于BC,點(diǎn)H為M、N兩點(diǎn)的勾股點(diǎn),且點(diǎn)H在直線l上,求PH的長;
(3)如圖2,矩形ABCD中,AB=12,BC=6,將紙片折疊,折痕分別與CD、AB交于點(diǎn)F、G,若A、E兩點(diǎn)的勾股點(diǎn)為BC邊的中點(diǎn)M,求折痕FG的長.

查看答案和解析>>

如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)能構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).例如:矩形ABCD中,點(diǎn)C與A,B兩點(diǎn)可構(gòu)成直角三角形ABC,則稱點(diǎn)C為A,B兩點(diǎn)的勾股點(diǎn).同樣,點(diǎn)D也是A,B兩點(diǎn)的勾股點(diǎn).

(1)如圖1,矩形ABCD中,AB=2,BC=1,請?jiān)谶匔D上作出A,B兩點(diǎn)的勾股點(diǎn)(點(diǎn)C和點(diǎn)D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2 矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A, B兩點(diǎn)的勾股點(diǎn)的個(gè)數(shù)

(3 如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點(diǎn)P作直線l平行于BC,點(diǎn)H為M,N兩點(diǎn)的勾股點(diǎn),且點(diǎn)H在直線l上.求PH的長.

【解析】(1)以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn);

(2)利用(1)中圖形得出C,D,E,F(xiàn)即可得出答案;

(3)求出MN的長度,根據(jù)勾股數(shù)的特點(diǎn)得出符合要求的點(diǎn)

 

查看答案和解析>>

如果一個(gè)點(diǎn)能與另外兩個(gè)點(diǎn)能構(gòu)成直角三角形,則稱這個(gè)點(diǎn)為另外兩個(gè)點(diǎn)的勾股點(diǎn).例如:矩形ABCD中,點(diǎn)C與A,B兩點(diǎn)可構(gòu)成直角三角形ABC,則稱點(diǎn)C為A,B兩點(diǎn)的勾股點(diǎn).同樣,點(diǎn)D也是A,B兩點(diǎn)的勾股點(diǎn).

(1)如圖1,矩形ABCD中,AB=2,BC=1,請?jiān)谶匔D上作出A,B兩點(diǎn)的勾股點(diǎn)(點(diǎn)C和點(diǎn)D除外)(要求:尺規(guī)作圖,保留作圖痕跡,不要求寫作法);

(2 矩形ABCD中,AB=3,BC=1,直接寫出邊CD上A, B兩點(diǎn)的勾股點(diǎn)的個(gè)數(shù)

(3 如圖2,矩形ABCD中,AB=12,BC=4,DP=4,DM=8,AN=5.過點(diǎn)P作直線l平行于BC,點(diǎn)H為M,N兩點(diǎn)的勾股點(diǎn),且點(diǎn)H在直線l上.求PH的長.

【解析】(1)以線段AB為直徑的圓與線段CD的交點(diǎn),或線段CD的中點(diǎn);

(2)利用(1)中圖形得出C,D,E,F(xiàn)即可得出答案;

(3)求出MN的長度,根據(jù)勾股數(shù)的特點(diǎn)得出符合要求的點(diǎn)

 

查看答案和解析>>

概念理解
把一個(gè)或幾個(gè)圖形分割后,不重疊、無縫隙的重新拼成另一個(gè)圖形的過程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個(gè)多邊形是否可以通過若干次的剖分--重拼成一個(gè)正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

概念理解
把一個(gè)或幾個(gè)圖形分割后,不重疊、無縫隙的重新拼成另一個(gè)圖形的過程叫做“剖分--重拼”.如圖1,一個(gè)梯形可以剖分--重拼為一個(gè)三角形;如圖2,任意兩個(gè)正方形可以剖分--重拼為一個(gè)正方形.
嘗試操作
如圖3,把三角形剖分--重拼為一個(gè)矩形.(只要畫出示意圖,不需說明操作步驟)

閱讀解釋
如何把一個(gè)矩形ABCD(如圖4)剖分--重拼為一個(gè)正方形呢?操作如下:
①畫輔助圖.作射線OX,在射線OX上截取OM=AB,MN=BC.以O(shè)N為直徑作半圓,過點(diǎn)M作MI⊥射線OX,與半圓交于點(diǎn)I;
②圖4中,在CD上取點(diǎn)F,使AF=MI,作BE⊥AF,垂足為E.把△ADF沿射線DC平移到△BCH的位置,把△AEB沿射線AF平移到△FGH的位置,得四邊形EBHG.
請說明按照上述操作方法得到的四邊形EBHG是正方形.

拓展延伸
任意一個(gè)多邊形是否可以通過若干次的剖分--重拼成一個(gè)正方形?如果可以,請簡述操作步驟;如果不可以,請說明理由.

查看答案和解析>>

一、選擇題

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空題

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答題

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 證明:在中,--2分

分別是的中點(diǎn),∴.   ∴.---------4分

(2) 四邊形是矩形.

證明:∵四邊形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四邊形是平行四邊形.        ------------- 7分

∴四邊形是矩形.     ------------------------------------------------------------- 8分

18.解:過,垂足為,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)證明:在等腰梯形中,,

        --------------------------------------------------1分

,,

.                      -------------3分

(2) 解:過分別作,垂足分別為.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原來一天可獲得的利潤為 (元)-------2分

(2). ① 由題意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 當(dāng)時(shí),. ----------------------------6分

解這個(gè)方程,得.  ----------------------------------------------------------------8分

 答:出售單價(jià)是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函數(shù)解析式可知:只有點(diǎn)(1,4)和(3,1)在其圖像上,所以,甲獲勝的概率是,即平均每12次才獲勝1次,得10分;而乙獲勝的概率是,即平均每12次獲勝11次,得11分,所以我愿意當(dāng)乙.--------------------- 10分

22.(1) 四邊形是平行四邊形.            ------------------------------1分

證明:.又,..

四邊形是平行四邊形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的證明過程,可知分別是邊長為的正三角形.

點(diǎn)的距離為.即. -----------------8分,時(shí), 四邊形的面積有最大值是.

此時(shí),重合,, 四邊形是菱形. -------------------------11分

23.解:⑴過點(diǎn)軸,垂足為,由垂徑定理,得的中點(diǎn),

.軸相切于中,

點(diǎn)的坐標(biāo)是.            -----------------2分

設(shè)的解析式為.將兩點(diǎn)的坐標(biāo)代入,得解得所在直線的解析式為         --------------------- 4分

(2) ∵,∴連結(jié).

,∴          -----------------------6分

是直徑,∴

         -------------------------------------------------------------------8分

(3) 判斷:不存在.      ----------------------------------------------------------------- 9分

假設(shè)存在點(diǎn),使為等邊三角形.則.連結(jié),那么.,利用的面積,可得,不與重合, .這與等邊三角形定義矛盾.

假設(shè)不成立.即點(diǎn)不存在. ----------------------------------------------------------- 12分-

 

 

 


同步練習(xí)冊答案