如圖9.是邊長為6的正的重心, 查看更多

 

題目列表(包括答案和解析)

精英家教網如圖,在邊長為2個單位長度的正方形ABCD中,點O、E分別是AD、AB的中點,點F是以點O為圓心,OE長為半徑的圓弧與DC的交點,點P是
EF
上的動點,連接OP并延長交直線BC于K.
(1)當P從E點沿
EF
運動到F時,K運動了多少單位長度?
(2)過點P作
EF
所在圓的切線,當該切線不與BC平行時,設它與射線AB、直線BC分別交于M、G,
①當K與B重合時,BG:BM=?
②在P運動過程中,是否存在BG:BM=3的情況?若存在,求出BK的值;若不存在說明理由.

查看答案和解析>>

如圖,在邊長為2的正方形ABCD中,以點D為圓心、DC為半徑作,點E在AB上,且與A、B兩點均不重合,點M在AD上,且ME=MD,過點E作EF⊥ME,交BC于點F,連接DE、MF.

(1)求證:EF是所在⊙D的切線;

(2)當MA=時,求MF的長;

(3)試探究:△MFE能否是等腰直角三角形?若是,請直接寫出MF的長度;若不是,請說明理由.

 

查看答案和解析>>

如圖,在邊長為2個單位長度的正方形ABCD中,點O、E分別是AD、AB的中點,點F是以點O為圓心,OE長為半徑的圓弧與DC的交點,點P是數(shù)學公式上的動點,連接OP并延長交直線BC于K.
(1)當P從E點沿數(shù)學公式運動到F時,K運動了多少單位長度?
(2)過點P作數(shù)學公式所在圓的切線,當該切線不與BC平行時,設它與射線AB、直線BC分別交于M、G,
①當K與B重合時,BG:BM=?
②在P運動過程中,是否存在BG:BM=3的情況?若存在,求出BK的值;若不存在說明理由.

查看答案和解析>>

如圖,在邊長為2個單位長度的正方形ABCD中,點O、E分別是AD、AB的中點,點F是以點O為圓心,OE長為半徑的圓弧與DC的交點,點P是上的動點,連接OP并延長交直線BC于K.
(1)當P從E點沿運動到F時,K運動了多少單位長度?
(2)過點P作所在圓的切線,當該切線不與BC平行時,設它與射線AB、直線BC分別交于M、G,
①當K與B重合時,BG:BM=?
②在P運動過程中,是否存在BG:BM=3的情況?若存在,求出BK的值;若不存在說明理由.

查看答案和解析>>

如圖,在邊長為2個單位長度的正方形ABCD中,點O、E分別是AD、AB的中點,點F是以點O為圓心,OE長為半徑的圓弧與DC的交點,點P是上的動點,連接OP并延長交直線BC于K.
(1)當P從E點沿運動到F時,K運動了多少單位長度?
(2)過點P作所在圓的切線,當該切線不與BC平行時,設它與射線AB、直線BC分別交于M、G,
①當K與B重合時,BG:BM=?
②在P運動過程中,是否存在BG:BM=3的情況?若存在,求出BK的值;若不存在說明理由.

查看答案和解析>>

一、選擇題

1. B;  2. B;  3. B;  4. C;  5. A; 6. C.

二、填空題

7. x≥―1且x≠2;  8. 9;   9.  97;  10. 答案不唯一,如等; 

11. 略;  12. ; 13.  6,150;  14.  4; 15. .

三、解答題

16.原式=    ------------------------------4分

= -- --------------------------------------------------------------6分

= .-----------------------------------------------------------------------------7分

17.(1) 證明:在中,--2分

分別是的中點,∴.   ∴.---------4分

(2) 四邊形是矩形.

證明:∵四邊形是菱形,∴.      ----------------5分

.     -----------------------------------------------------------------------6分

∴四邊形是平行四邊形.        ------------- 7分

∴四邊形是矩形.     ------------------------------------------------------------- 8分

18.解:過,垂足為,   ----------------------------------------1分

中,   ----------------------3分

中, ,∴    ------------------5分

         ------------------------------------6分

               --------------------8分

19.(1)證明:在等腰梯形中,,

        --------------------------------------------------1分

,,

.                      -------------3分

(2) 解:過分別作,垂足分別為.

       --------------------------------------------------------------------5分

,  ∴              ----------------------------------------------6分

,∴          ------------------------------------------------------7分

(2)  解:存在.

由(1)知.∴.   -----------------------------------------8分

,∴.          ---------------------------------------9分

解得:        --------------------------------------------------------10分

20.解:(1)原來一天可獲得的利潤為 (元)-------2分

(2). ① 由題意,得.

.                              ------------------4分

.                           ----------------------------------------------- 5分

② 當時,. ----------------------------6分

解這個方程,得.  ----------------------------------------------------------------8分

 答:出售單價是77元或73元. ----------------------------------------------------------------9分

 73元77元.                             ----------------------- 10分

21.解:(1)列表格如下:

1

2

3

4

5

6

1

(1,1)

(1,2)

(1,3)

(1,4)

(1,5)

(1,6)

2

(2,1)

(2,2)

(2,3)

(2,4)

(2,5)

(2,6)

3

(3,1)

(3,2)

(3,3)

(3,4)

(3,5)

(3,6)

4

(4,1)

(4,2)

(4,3)

(4,4)

(4,5)

(4,6)

----------------------------------------5分

⑵由函數(shù)解析式可知:只有點(1,4)和(3,1)在其圖像上,所以,甲獲勝的概率是,即平均每12次才獲勝1次,得10分;而乙獲勝的概率是,即平均每12次獲勝11次,得11分,所以我愿意當乙.--------------------- 10分

22.(1) 四邊形是平行四邊形.            ------------------------------1分

證明:.又,..

四邊形是平行四邊形.    -----------------------------------4分

(2) 的重心,.    ---------------------------5分

由(1)的證明過程,可知分別是邊長為的正三角形.

的距離為.即. -----------------8分,時, 四邊形的面積有最大值是.

此時,重合,, 四邊形是菱形. -------------------------11分

23.解:⑴過點軸,垂足為,由垂徑定理,得的中點,

.軸相切于中,

的坐標是.            -----------------2分

的解析式為.將兩點的坐標代入,得解得所在直線的解析式為         --------------------- 4分

(2) ∵,∴連結.

,∴          -----------------------6分

是直徑,∴

         -------------------------------------------------------------------8分

(3) 判斷:不存在.      ----------------------------------------------------------------- 9分

假設存在點,使為等邊三角形.則.連結,那么.,利用的面積,可得,不與重合, .這與等邊三角形定義矛盾.

假設不成立.即點不存在. ----------------------------------------------------------- 12分-

 

 

 


同步練習冊答案