將曲線與曲線分別化為直角坐標(biāo)方程.得 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xoy中,已知曲線C1:x2+y2=1,以平面直角坐標(biāo)系xoy的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線l:ρ(2cosθ-sinθ)=6.

(Ⅰ)將曲線C1上的所有點(diǎn)的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的、2倍后得到曲線C2,試寫出直線l的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

(Ⅱ)在曲線C2上求一點(diǎn)P,使點(diǎn)P到直線l的距離最大,并求出此最大值.

【解析】(Ⅰ)根據(jù)極坐標(biāo)與普通方程的互化,將直線l:ρ(2cosθ-sinθ)=6化為普通方程,C2的方程為,化為普通方程;(Ⅱ)利用點(diǎn)到直線的距離公式表示出距離,求最值.

 

查看答案和解析>>

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長.

查看答案和解析>>

已知C1的極坐標(biāo)方程為ρcos(θ-
π
4
)=1
,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為
x=
t
-
1
t
y=4-(t+
1
t
)
(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長.

查看答案和解析>>

已知C1的極坐標(biāo)方程為,M,N分別為C1在直角坐標(biāo)系中與x軸,y軸的交點(diǎn).曲線C2的參數(shù)方程為(t為參數(shù),且t>0),P為M,N的中點(diǎn).
(1)將C1,C2化為普通方程;
(2)求直線OP(O為坐標(biāo)原點(diǎn))被曲線C2所截得弦長.

查看答案和解析>>

選修4—4:坐標(biāo)系與參數(shù)方程

已知曲線C1的極坐標(biāo)方程為,曲線C2的極坐標(biāo)方程為,曲線C1,C2相交于點(diǎn)A、B.

    (1)分別將曲線C1,C2的極坐標(biāo)方程化為直角坐標(biāo)方程;

    (2)求弦AB的長.

查看答案和解析>>


同步練習(xí)冊答案