②由向量的性質(zhì) 類比得到復(fù)數(shù)z的性質(zhì)|z|2=z2, 查看更多

 

題目列表(包括答案和解析)

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是(  )
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量
a
的性質(zhì)|
a
|2=
a
2類比復(fù)數(shù)z的性質(zhì)|z|2=z2;
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A、①③B、②④C、②③D、①④

查看答案和解析>>

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是(  )
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量
a
的性質(zhì)|
a
|2=
a
2類比復(fù)數(shù)z的性質(zhì)|z|2=z2;
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A.①③B.②④C.②③D.①④

查看答案和解析>>

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是( )
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量的性質(zhì)||2=2類比復(fù)數(shù)z的性質(zhì)|z|2=z2;
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A.①③
B.②④
C.②③
D.①④

查看答案和解析>>

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是( )
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量的性質(zhì)||2=2類比復(fù)數(shù)z的性質(zhì)|z|2=z2;
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A.①③
B.②④
C.②③
D.①④

查看答案和解析>>

下列關(guān)于復(fù)數(shù)的類比推理中,錯(cuò)誤的是( )
①?gòu)?fù)數(shù)的加減運(yùn)算可以類比多項(xiàng)式的加減運(yùn)算;
②由向量的性質(zhì)||2=2類比復(fù)數(shù)z的性質(zhì)|z|2=z2
③方程ax2+bx+c=0(a,b,c∈R)有兩個(gè)不同實(shí)數(shù)根的條件是b2-4ac>0,可以類比得到方程az2+bz+c=0(a,b,c∈C)有兩個(gè)不同復(fù)數(shù)根的條件是b2-4ac>0;
④由向量加法的幾何意義可以類比得到復(fù)數(shù)加法的幾何意義.
A.①③
B.②④
C.②③
D.①④

查看答案和解析>>

一、填空題:

1、        2、(1.5,0)         3、          4、95%

5、      6、大前提      7、18

8、4    9、    10、4     11、    12、     13、②③    14、

二、解答題:

15. (14分) 解:設(shè),而

16、(14分)解: 一般性的命題為

證明:左邊

         

 

暈機(jī)

不暈機(jī)

合計(jì)

24

31

55

8

26

34

合計(jì)

32

57

89

       所以左邊等于右邊

17、(15分).根據(jù)題意,列出列聯(lián)表如下:

提出統(tǒng)計(jì)假設(shè),:在惡劣氣候飛行中男人與女人一樣容易暈機(jī)則

   

 

,故我們有90%的把握認(rèn)為在這次航程中男人比女人更容易暈機(jī).

 

 

18、(15分)解: (1) 散點(diǎn)圖略

      (2)             

 ; 

       所求的回歸方程為 

      (3)   當(dāng), 

       預(yù)測(cè)生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低(噸)

19、(16分)解:(I)由函數(shù)的圖像經(jīng)過點(diǎn)(0,2)可知,,

,∵在點(diǎn)M(-1,f(-1))處的切線方程為.

,

(II)

20、(14分)解:(1)        ∴OAPB的正方形

        由     ∴P點(diǎn)坐標(biāo)為(

(2)設(shè)A(x1,y1),B(x2,y2

則PA、PB的方程分別為,而PA、PB交于P(x0,y0

x1x0+y1y0=4,x2x0+y2y0=4,∴AB的直線方程為:x0x+y0y=4

         (3)由、

 

當(dāng)且僅當(dāng).

 


同步練習(xí)冊(cè)答案