(2)當(dāng)AB的長為.時(shí).求二面角A―EF―C的大小. 查看更多

 

題目列表(包括答案和解析)

19.在棱長為a的正方體OABC中,E、F分別是棱AB、BC上的動點(diǎn),且AE=BF.

(1)求證:A′FC′E

(2)當(dāng)三棱錐B′—BEF的體積取得最大值時(shí),求二面角B′—EFB的大小.(結(jié)果用反三角函數(shù)表示)

查看答案和解析>>

如圖,邊長為2的正方形ABCD中,點(diǎn)E、F分別是邊AB、BC上的點(diǎn),將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A′.
(1)△A′EF恰好是正三角形且Q是A′F的中點(diǎn),求證:EQ⊥平面A′FD
(2)當(dāng)E、F分別是AB、BC的中點(diǎn)時(shí),求二面角A′-EF-D的正弦值.

查看答案和解析>>

如圖,邊長為2的正方形ABCD中,點(diǎn)E、F分別是邊AB、BC上的點(diǎn),將△AED、△DCF分別沿DE、DF折起,使A、C兩點(diǎn)重合于點(diǎn)A′.
(1)△A′EF恰好是正三角形且Q是A′F的中點(diǎn),求證:EQ⊥平面A′FD
(2)當(dāng)E、F分別是AB、BC的中點(diǎn)時(shí),求二面角A′-EF-D的正弦值.

查看答案和解析>>

精英家教網(wǎng)如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=
3
,EF=2.
(1)求異面直線AD與EF所成的角;
(2)當(dāng)AB的長為何值時(shí),二面角A-EF-C的大小為45°?

查看答案和解析>>

如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BE∥CF,CE⊥EF,AD=數(shù)學(xué)公式,EF=2.
(1)求異面直線AD與EF所成的角;
(2)當(dāng)AB的長為何值時(shí),二面角A-EF-C的大小為45°?

查看答案和解析>>

 

一、選擇題:本大題共12個(gè)小題,每小題5分,共60分。

1―6BBCDBD  7―12CACAAC

二、填空題:本大題共4個(gè)小題,每小題4分,共16分。

13.0.8;

14.

15.; 

16.①③

三、解答題:

17.解:(1)由

       得

      

       由正弦定得,得

      

       又B

      

       又

       又      6分

   (2)

       由已知

             9分

       當(dāng)

       因此,當(dāng)時(shí),

      

       當(dāng)

           12分

18.解:(1)依題意,甲答對主式題數(shù)的可能取值為0,1,2,3,則

      

      

      

              4分

       的分布列為

      

0

1

2

3

P

       甲答對試題數(shù)的數(shù)學(xué)期望為

         6分

   (2)設(shè)甲、乙兩人考試合格的事件分別為A、B,則

      

          9分

       因?yàn)槭录嗀、B相互獨(dú)立,

* 甲、乙兩人考試均不合格的概率為

      

       *甲、乙兩人至少有一人考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為  12分

       另解:甲、乙兩人至少有一個(gè)考試合格的概率為

      

       答:甲、乙兩人于少有一人考試合格的概率為 

19.解法一(1)過點(diǎn)E作EG交CF于G,

//

       所以AD=EG,從而四邊形ADGE為平行四邊形

       故AE//DG    4分

       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2b5fe2bbed00a5459daa51ea5e469369.zip/73788.files/image232.gif" >平面DCF, 平面DCF,

       所以AE//平面DCF   6分

   (2)過點(diǎn)B作交FE的延長線于H,

       連結(jié)AH,BH。

       由平面

       所以為二面角A―EF―C的平面角

      

       又因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2b5fe2bbed00a5459daa51ea5e469369.zip/73788.files/image250.gif" >

       所以CF=4,從而BE=CG=3。

       于是    10分

       在

       則,

       因?yàn)?img src="http://pic.1010jiajiao.com/pic4/docfiles/down/test/down/2b5fe2bbed00a5459daa51ea5e469369.zip/73788.files/image258.gif" >

<s id="16666"><legend id="16666"><big id="16666"></big></legend></s>
          1.        解法二:(1)如圖,以點(diǎn)C為坐標(biāo)原點(diǎn),

                   建立空間直角坐標(biāo)系

                   設(shè)

                   則

                  

                   于是

             

             

             

             

            20.解:(1)當(dāng)時(shí),由已知得

                  

                   同理,可解得   4分

               (2)解法一:由題設(shè)

                   當(dāng)

                   代入上式,得     (*) 6分

                   由(1)可得

                   由(*)式可得

                   由此猜想:   8分

                   證明:①當(dāng)時(shí),結(jié)論成立。

                   ②假設(shè)當(dāng)時(shí)結(jié)論成立,

                   即

                   那么,由(*)得

                  

                   所以當(dāng)時(shí)結(jié)論也成立,

                   根據(jù)①和②可知,

                   對所有正整數(shù)n都成立。

                   因   12分

                   解法二:由題設(shè)

                   當(dāng)

                   代入上式,得   6分

                  

                  

                   -1的等差數(shù)列,

                  

                      12分

            21.解:(1)由橢圓C的離心率

                   得,其中,

                   橢圓C的左、右焦點(diǎn)分別為

                   又點(diǎn)F2在線段PF1的中垂線上

                  

                   解得

                      4分

               (2)由題意,知直線MN存在斜率,設(shè)其方程為

                   由

                   消去

                   設(shè)

                   則

                   且   8分

                   由已知,

                   得

                   化簡,得     10分

                  

                   整理得

            * 直線MN的方程為,     

                   因此直線MN過定點(diǎn),該定點(diǎn)的坐標(biāo)為(2,0)    12分

            22.解:   2分

               (1)由已知,得上恒成立,

                   即上恒成立

                   又當(dāng)

                      4分

               (2)當(dāng)時(shí),

                   在(1,2)上恒成立,

                   這時(shí)在[1,2]上為增函數(shù)

                    

                   當(dāng)

                   在(1,2)上恒成立,

                   這時(shí)在[1,2]上為減函數(shù)

                  

                   當(dāng)時(shí),

                   令 

                   又 

                       9分

                   綜上,在[1,2]上的最小值為

                   ①當(dāng)

                   ②當(dāng)時(shí),

                   ③當(dāng)   10分

               (3)由(1),知函數(shù)上為增函數(shù),

                   當(dāng)

                  

                   即恒成立    12分

                  

                  

                  

                   恒成立    14分


            同步練習(xí)冊答案