(Ⅲ)由.得 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)如圖1,A,B,C是平面內的三個點,且A與B不重合,P是平面內任意一點,若點C在直線AB上,試證明:存在實數λ,使得:
PC
PA
+(1-λ)
PB

(Ⅱ)如圖2,設G為△ABC的重心,PQ過G點且與AB、AC(或其延長線)分別交于P,Q點,若
AP
=m
AB
AQ
=n
AC
,試探究:
1
m
+
1
n
的值是否為定值,若為定值,求出這個定值;若不是定值,請說明理由.

查看答案和解析>>

(Ⅰ)求證:
C
m
n
=
n
m
C
m-1
n-1
;
(Ⅱ)利用第(Ⅰ)問的結果證明Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1;  
(Ⅲ)其實我們常借用構造等式,對同一個量算兩次的方法來證明組合等式,譬如:(1+x)1+(1+x)2+(1+x)3+…+(1+x)n=
(1+x)[1-(1+x)n]
1-(1+x)
=
(1+x)n+1-(1+x)
x
;,由左邊可求得x2的系數為C22+C32+C42+…+Cn2,利用右式可得x2的系數為Cn+13,所以C22+C32+C42+…+Cn2=Cn+13.請利用此方法證明:(C2n02-(C2n12+(C2n22-(C2n32+…+(C2n2n2=(-1)nC2nn

查看答案和解析>>

()(本小題滿分12分)

如圖,四棱錐S-ABCD 的底面是正方形,每條側棱的長都是地面邊長的倍,P為側棱SD上的點。   

(Ⅰ)求證:ACSD;

(Ⅱ)若SD平面PAC,求二面角P-AC-D的大小

(Ⅲ)在(Ⅱ)的條件下,側棱SC上是否存在一點E,使得BE∥平面PAC。若存在,求SE:EC的值;若不存在,試說明理由。

查看答案和解析>>

()某企業(yè)有3個分廠生產同一種電子產品,第一、二、三分廠的產量之比為1:2:1,用分層抽樣方法(每個分廠的產品為一層)從3個分廠生產的電子產品中共取100件作使用壽命的測試,由所得的測試結果算得從第一、二、三分廠取出的產品的使用壽命的平均值分別為980h,1020h,1032h,則抽取的100件產品的使用壽命的平均值為                h.

查看答案和解析>>

()對變量x, y 有觀測數據理力爭()(i=1,2,…,10),得散點圖1;對變量u ,v 有觀測數據(,)(i=1,2,…,10),得散點圖2. 由這兩個散點圖可以判斷 (   )

(A)變量x 與y 正相關,u 與v 正相關    (B)變量x 與y 正相關,u 與v 負相關

(C)變量x 與y 負相關,u 與v 正相關    (D)變量x 與y 負相關,u 與v 負相關

查看答案和解析>>


同步練習冊答案