已知函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=4sin(2x-
π
3
)+1
,給定條件p:
π
4
≤x≤
π
2
,條件q:-2<f(x)-m<2,若p是q的充分條件,則實數(shù)m的取值范圍為
 

查看答案和解析>>

已知函數(shù)f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且對任意實數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
52
))的值是
 

查看答案和解析>>

已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設f(x)=
g(x)
x

(Ⅰ)求a,b的值;
(Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
(Ⅲ)方程f(|2x-1|)+k(
2
|2x-1|
-3)=0
有三個不同的實數(shù)解,求實數(shù)k的范圍.

查看答案和解析>>

8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時,f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點個數(shù)為( 。

查看答案和解析>>

已知函數(shù)f(x)=
3-x,x>0
x2-1.x≤0
,則f[f(-2)]=
 

查看答案和解析>>

一、選擇題:1―5 BDACB  6―12ABACA CB

二、填空題13.2   14.  15.16.①⑧⑤ 或①③⑧ 或④⑧①或④①⑧

17.(1)解:在中  

                                                 2分

    4分

      …….6分

   (2)                            10分

18.解:(1)在正方體中,

、、分別為、、中點

  即平面

 到平面的距離即到平面的距離.               3分

    在平面中,連結(jié)

之距為                    

因此到平面的距離為……………6分

   (2)在四面體中,

    又底面三角形是正三角形,

    設之距為

      故與平面所成角的正  …………12分

另解向量法

19.解:(Ⅰ)設、兩項技術指標達標的概率分別為

由題意得:                  …………..…………..4分

  解得:,∴.   即,一個零件經(jīng)過檢測為合格品的概率為. ………. ……………………………….8分                     

(Ⅱ)任意抽出5個零件進行檢查,其中至多3個零件是合格品的概率為

 ………………..12分                               

20.解:(1)

   ………………4分

   (2)由

        …………8分

   (3)   

21.解:(1)

                  2分

-1

(x)

-

0

+

0

-

(x)

極小值0

極大值

                                      6分

   (2)

      

                    8分

………….12分

22.解法一:(Ⅰ)設點,則,由得:

,化簡得.……………….3分

(Ⅱ)(1)設直線的方程為:

,,又,

聯(lián)立方程組,消去得:,,

……………………………………6分

得:

,,整理得:

,,

.……………………………………………………………9分

解法二:(Ⅰ)由得:,

,

所以點的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過點分別作準線的垂線,垂足分別為,,

則有:.…………②

,

所以點的軌跡是拋物線,由題意,軌跡的方程為:

(Ⅱ)(1)由已知,,得

則:.…………①

過點分別作準線的垂線,垂足分別為,

則有:.…………②

由①②得:,即

(Ⅱ)(2)解:由解法一,

當且僅當,即時等號成立,所以最小值為.…………..12分


同步練習冊答案