24 8. 2 9.0<x<4或x>4 10. 11.2072 12. 13.6 14.③ 查看更多

 

題目列表(包括答案和解析)

(2012•福建)受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)產(chǎn)生每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關,某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年,現(xiàn)從該廠已售出的兩種品牌轎車中隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌          甲       乙
首次出現(xiàn)故障時間x(年) 0<x<1 1<x≤2 x>2 0<x≤2 x>2
轎車數(shù)量(輛) 2 3 45 5 45
每輛利潤(萬元) 1 2 3 1.8 2.9
將頻率視為概率,解答下列問題:
(I)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(II)若該廠生產(chǎn)的轎車均能售出,記住生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(III)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌轎車,若從經(jīng)濟效益的角度考慮,你認為應該產(chǎn)生哪種品牌的轎車?說明理由.

查看答案和解析>>

已知函數(shù)f(x)是定義在R上的奇函數(shù),且f(x)的圖象關于直線x=1對稱.

(1)求證:f(x)是周期為4的周期函數(shù);

(2)若(0<x≤1),求x∈[-5,-4]時,函數(shù)f(x)的解析式.

 

查看答案和解析>>

 (本小題12分) 適當飲用葡萄酒可以預防心臟病,下表中的信息是19個發(fā)達國家一年中平均每人喝葡萄酒攝取酒精的升數(shù)z以及一年中每10萬人因心臟病死亡的人數(shù),

國家

澳大利亞

奧地利

比利時

加拿大

丹麥

芬蘭

法國

冰島

爰爾蘭

意大利

x

2.5

3.9

2.9

2.4

2.9

0.8

9.1

0.8

0.7

7.9

y

211

167

131

191

220

297

71

221

300

107

 

國家

荷蘭

新西蘭

挪威

西班牙

瑞典

瑞士

英國

美國

德國

x

1.8

1.9

0.8

6.5

1.6

5.8

1.3

1.2

2.7

y

167

266

227

86

207

115

285

199

172

(1)畫出散點圖,說明相關關系的方向、形式及強度;

(2)求出每10萬人中心臟病死亡人數(shù),與平均每人從葡萄酒得到的酒精x(L)之間的線性回歸方程.

(3)用(2)中求出的方程來預測以下兩個國家的心臟病死亡率,其中一個國家的成人每年平均從葡萄酒中攝取1L的酒精,另一國則是8 L.

 

查看答案和解析>>

已知圓x2+y2=r2在曲線|x|+|y|=4的內(nèi)部,則半徑r的范圍是(  )

A  .0<r<2    B   .0<r<      C.   0<r<2      D  .0<r<4

 

查看答案和解析>>

已知,則的取值范圍為                  

A  .x<2            B.   x>2         C.  <x<2            D .   0<x<2

 

查看答案和解析>>


同步練習冊答案