(1)求過點與曲線相切的切線方程, 查看更多

 

題目列表(包括答案和解析)

(12分)曲線C是中心在原點,焦點在軸上的雙曲線,已知它的一個焦點F的坐標為(2,0),一條漸進線的方程為,過焦點F作直線交曲線C的右支于P.Q兩點,R是弦PQ的中點。

  (Ⅰ)求曲線C的方程;

  (Ⅱ)當點P在曲線C右支上運動時,求點R到軸距離的最小值;

  (Ⅲ)若在軸在左側(cè)能作出直線,使以線段pQ為直徑的圓與直線L相切,求m的取值范圍。

查看答案和解析>>

在曲線y=1-x2(x≥0,y≥0)上找一點(x0,y0),過此點作一切線與x軸、y軸圍成一個三角形.
(1)求三角形面積S的最小值及相應的x0
(2)當三角形面積達到最小值時,求此三角形的外接圓方程.

查看答案和解析>>

經(jīng)過點(0,1)的直線l與圓x2+y2=r2相切,與雙曲線x2-2y2=r2有兩個交點,判斷l(xiāng)能否過雙曲線的右焦點?如果能,試求出此時l的方程;如果不能,請說明理由.

查看答案和解析>>

在曲線y=1-x2(x≥0,y≥0)上找一點(x0,y0),過此點作一切線與x軸、y軸圍成一個三角形.
(1)求三角形面積S的最小值及相應的x0;
(2)當三角形面積達到最小值時,求此三角形的外接圓方程.

查看答案和解析>>

在曲線y=1-x2(x≥0,y≥0)上找一點(x0,y0),過此點作一切線與x軸、y軸圍成一個三角形.
(1)求三角形面積S的最小值及相應的x0;
(2)當三角形面積達到最小值時,求此三角形的外接圓方程.

查看答案和解析>>


同步練習冊答案