題目列表(包括答案和解析)
已知函數(shù)
(Ⅰ)求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)在銳角△ABC中,角A、B、C的對(duì)邊分別是a、b、c滿足(2a-c)cosB=bcosC,求f(2A)的取值范圍.
已知函數(shù)
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對(duì)邊分別是a、b、c,滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.
若函數(shù)
(1)
求函數(shù)f(x)的單調(diào)遞增區(qū)間.(2)
求f(x)在區(qū)間[-3,4]上的值域求函數(shù)y=(x2+2x-3)的單調(diào)遞增區(qū)間.
(1)
已知函數(shù)是單調(diào)遞增的奇函數(shù),定義域?yàn)?/FONT>[-1,1],求函數(shù)的定義域和值域.(2)
證明:函數(shù)在區(qū)間[4,5]上是減函數(shù).一,選擇題:
D C B CC, CA BC B
二、填空題:
(11), -3, (12), 27 (13),
(14), . (15), -26,14,65
三、解答題:
16, 由已知得;所以解集:;
17, (1)由題意,=1又a>0,所以a=1.
(2)g(x)=,當(dāng)時(shí),=,無(wú)遞增區(qū)間;當(dāng)x<1時(shí),=,它的遞增區(qū)間是.
綜上知:的單調(diào)遞增區(qū)間是.
18, (1)當(dāng)0<t≤10時(shí),
是增函數(shù),且f(10)=240
當(dāng)20<t≤40時(shí),是減函數(shù),且f(20)=240 所以,講課開始10分鐘,學(xué)生的注意力最集中,能持續(xù)10分鐘。(3)當(dāng)0<t≤10時(shí),令,則t=4 當(dāng)20<t≤40時(shí),令,則t≈28.57
則學(xué)生注意力在180以上所持續(xù)的時(shí)間28.57-4=24.57>24
從而教師可以第4分鐘至第28.57分鐘這個(gè)時(shí)間段內(nèi)將題講完。
19, (I)……1分
根據(jù)題意, …………4分
解得. …………7分
(II)因?yàn)?sub>……7分
(i)時(shí),函數(shù)無(wú)最大值,
不合題意,舍去. …………11分
(ii)時(shí),根據(jù)題意得
解之得 …………13分
為正整數(shù),=3或4. …………14分
20. (1)當(dāng)x∈[-1,0)時(shí), f(x)= f(-x)=loga[2-(-x)]=loga(2+x).
當(dāng)x∈[2k-1,2k),(k∈Z)時(shí),x-2k∈[-1,0], f(x)=f(x-2k)=loga[2+(x-2k)].
當(dāng)x∈[2k,2k+1](k∈Z)時(shí),x-2k∈[0,1], f(x)=f(x-2k)=loga[2-(x-2k)].
故當(dāng)x∈[2k-1,2k+1](k∈Z)時(shí), f(x)的表達(dá)式為
|