由于函數(shù)在中的最大值為: . 查看更多

 

題目列表(包括答案和解析)

時值5月,荔枝上市.某市水果市場由歷年的市場行情得知,從5月10日起的60天內(nèi),荔枝的售價S(t)(單位:元/kg)與上市時間t(單位:天)的關系大致可用如圖1所示的折線ABCD表示,每天的銷售量M(t)(單位:噸)與上市時間t(單位:天)的關系大致可用如圖2所示的拋物線段OEF表示,其中O為坐標原點,E是拋物線的頂點.
(1)請分別寫出S(t),M(t)關于t的函數(shù)關系式;
(2)在這60天內(nèi),該水果市場哪天的銷售額最大?

查看答案和解析>>

時值5月,荔枝上市.某市水果市場由歷年的市場行情得知,從5月10日起的60天內(nèi),荔枝的售價S(t)(單位:元/kg)與上市時間t(單位:天)的關系大致可用如圖1所示的折線ABCD表示,每天的銷售量M(t)(單位:噸)與上市時間t(單位:天)的關系大致可用如圖2所示的拋物線段OEF表示,其中O為坐標原點,E是拋物線的頂點.
(1)請分別寫出S(t),M(t)關于t的函數(shù)關系式;
(2)在這60天內(nèi),該水果市場哪天的銷售額最大?

查看答案和解析>>

時值5月,荔枝上市.某市水果市場由歷年的市場行情得知,從5月10日起的60天內(nèi),荔枝的售價S(t)(單位:元/kg)與上市時間t(單位:天)的關系大致可用如圖1所示的折線ABCD表示,每天的銷售量M(t)(單位:噸)與上市時間t(單位:天)的關系大致可用如圖2所示的拋物線段OEF表示,其中O為坐標原點,E是拋物線的頂點.
(1)請分別寫出S(t),M(t)關于t的函數(shù)關系式;
(2)在這60天內(nèi),該水果市場哪天的銷售額最大?

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學公式(t為常數(shù)).
(1)當t=1時,在圖中的直角坐標系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數(shù)列{an}的單調性并由此寫出該數(shù)列中最大項和最小項(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構造數(shù)列的過程停止.若可用上述方法構造出一個常數(shù)列{xn},求t的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=數(shù)學公式(t為常數(shù)).
(1)當t=1時,在圖中的直角坐標系內(nèi)作出函數(shù)y=f(x)的大致圖象,并指出該函數(shù)所具備的基本性質中的兩個(只需寫兩個).
(2)設an=f(n)(n∈N*),當t>10,且t∉N*時,試判斷數(shù)列{an}的單調性并由此寫出該數(shù)列中最大項和最小項(可用[t]來表示不超過t的最大整數(shù)).
(3)利用函數(shù)y=f(x)構造一個數(shù)列{xn},方法如下:對于給定的定義域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1)(n≥2,n∈N*),…在上述構造過程中,若xi(i∈N*)在定義域中,則構造數(shù)列的過程繼續(xù)下去;若xi不在定義域中,則構造數(shù)列的過程停止.若取定義域中的任一值作為x1,都可以用上述方法構造出一個無窮數(shù)列{xn},求實數(shù)t的值.

查看答案和解析>>


同步練習冊答案