(Ⅱ)若G為橢圓上不同于長(zhǎng)軸端點(diǎn)任一點(diǎn).求取值范圍, 查看更多

 

題目列表(包括答案和解析)

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在X軸上,F(xiàn)1,F2分別是橢圓的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),△MF1F2的面積為4,過(guò)F1的直線與橢圓交于A,B兩點(diǎn),△ABF2的周長(zhǎng)為.

(Ⅰ)求此橢圓的方程;

(Ⅱ)若N是左標(biāo)平面內(nèi)一動(dòng)點(diǎn),G是△MF1F2的重心,且,求動(dòng)點(diǎn)N的軌跡方程;

(Ⅲ)點(diǎn)p審此橢圓上一點(diǎn),但非短軸端點(diǎn),并且過(guò)P可作(Ⅱ)中所求得軌跡的兩條不同的切線,、R是兩個(gè)切點(diǎn),求的最小值.

查看答案和解析>>

(本小題滿分13分)如圖,,分別是橢圓ab>0)的左右焦點(diǎn),M為橢圓上一點(diǎn),垂直于x軸,且OM與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行。

(1)求橢圓的離心率;

(2)若G為橢圓上不同于長(zhǎng)軸端點(diǎn)任一點(diǎn),求∠取值范圍;

(3)過(guò)且與OM垂直的直線交橢圓于P、Q

求橢圓的方程

查看答案和解析>>

(本小題滿分13分)如圖,,分別是橢圓ab>0)的左右焦點(diǎn),M為橢圓上一點(diǎn),垂直于x軸,且OM與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行。
(1)求橢圓的離心率;
(2)若G為橢圓上不同于長(zhǎng)軸端點(diǎn)任一點(diǎn),求∠取值范圍;
(3)過(guò)且與OM垂直的直線交橢圓于P、Q
求橢圓的方程

查看答案和解析>>

 

二、選擇題

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

C

B

C

A

 

三、填空題

(11){x│x<1 } (12) (13)  3   (14)m=0或m≥1    (15) 2004

(16)②③④

三解答題

(17)(Ⅰ);  (Ⅱ).

 

(18)解:由題目知的圖像是開(kāi)口向下,交軸于兩點(diǎn)的拋物線,對(duì)稱軸方程為(如圖)

那么,當(dāng)時(shí),有,代入原式得:

解得:

經(jīng)檢驗(yàn)知: 不符合題意,舍去.

(Ⅰ)由圖像知,函數(shù)在內(nèi)為單調(diào)遞減,所以:當(dāng)時(shí),,當(dāng)時(shí),.

內(nèi)的值域?yàn)?sub>

(Ⅱ)令

要使的解集為R,則需要方程的根的判別式,即

解得  當(dāng)時(shí),的解集為R.

(19)(Ⅰ);  (Ⅱ)存在M=4.

 

(20)解:任設(shè)x 1>x2

         f(x 1)-f(x2) = a x 1+ - a x 2 -

                  =(x 1-x 2)(a+ )

         ∵f(x)是R上的減函數(shù),

         ∴(x 1-x 2)(a+ )<0恒成立

<1

       ∴a≤ -1 

(21)解:(Ⅰ)由已知

  ,

(Ⅱ)設(shè),

當(dāng)且僅當(dāng)時(shí), 

 

(Ⅲ)

 橢圓的方程為

(22)(Ⅰ).

(Ⅱ)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

 

 

 

 


同步練習(xí)冊(cè)答案