題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)時(shí),求直線與圓O公共點(diǎn)的一個(gè)極坐標(biāo).
D.選修4-5:不等式證明選講
對(duì)于任意實(shí)數(shù)和,不等式恒成立,試求實(shí)數(shù)的取值范圍.
C
[解析] 由基本不等式,得ab≤==-ab,所以ab≤,故B錯(cuò);+==≥4,故A錯(cuò);由基本不等式得≤=,即+≤,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×=,故D錯(cuò).故選C.
.定義域?yàn)?/span>R的函數(shù)滿足,且當(dāng)時(shí),,則當(dāng)時(shí),的最小值為( )
(A) (B) (C) (D)
.過(guò)點(diǎn)作圓的弦,其中弦長(zhǎng)為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
1.A 2.B 3.D 4.C 5.B 6.D 7.C 8.A 9.B 10.C(文、理)
11.B(文理) 12.C 13.-1 14.-2 15.①③④
16.①③④
17.設(shè):該工人在第一季度完成任務(wù)的月數(shù),:該工人在第一季度所得獎(jiǎng)金數(shù),則與的分布列如下:
∴
.
答:該工人在第一季度里所得獎(jiǎng)金的期望為153.75元.
18.(1)∵ ∴ ,且p=1,或.
若是,且p=1,則由.
∴ ,矛盾.故不可能是:,且p=1.由,得.
又,∴ .
(2)∵ ,,
∴ .
.
當(dāng)k≥2時(shí),. ∴ n≥3時(shí)有
.
∴ 對(duì)一切有:.
(3)∵ ,
∴ . .
故.
∴ .
又.
∴ .
故 .
19.(甲)(1)∵ 側(cè)面底面ABC, ∴ 在平面ABC上的射影是AC.
與底面ABC所成的角為∠.
∵ ,, ∴ ∠=45°.
。2)作⊥AC于O,則⊥平面ABC,再作OE⊥AB于E,連結(jié),則,所以∠就是側(cè)面與底面ABC所成二面角的平面角.
在Rt△中,,,
∴ . 60°.
。3)設(shè)點(diǎn)C到側(cè)面的距離為x.
∵ ,
∴ .(*)
∵ ,, ∴ .
又,∴ .
又. ∴ 由(*)式,得.∴
。ㄒ遥1)證明:如圖,以O為原點(diǎn)建立空間直角坐標(biāo)系.
設(shè)AE=BF=x,則(a,0,a),F(a-x,a,0),(0,a,a),E(a,x,0),
∴ (-x,a,-a),
(a,x-a,-a).
∵ ,
∴ .
。2)解:記BF=x,BE=y,則x+y=a,則三棱錐的體積為
.
當(dāng)且僅當(dāng)時(shí),等號(hào)成立,因此,三棱錐的體積取得最大值時(shí),.
過(guò)B作BD⊥BF交EF于D,連結(jié),則.
∴ ∠是二面角的平面角.在Rt△BEF中,直角邊,BD是斜邊上的高, ∴
在Rt△中,tan∠.故二面角的大小為.
20.∵ k=0不符合題意, ∴ k≠0,作直線:
,則.
∴ 滿足條件的
由消去x,得
,
..(*)
設(shè),、、,則 .
又.
∴ .
故AB的中點(diǎn),. ∵ l過(guò)E, ∴ ,即 .
代入(*)式,得
21.(1).當(dāng)x≥2時(shí),
.
∴ ,且.
∵ .
∴ 當(dāng)x=12-x,即x=6時(shí),(萬(wàn)件).故6月份該商品的需求量最大,最大需求量為萬(wàn)件.
。2)依題意,對(duì)一切{1,2,…,12}有.
∴ (x=1,2,…,12).
∵
∴ . 故 p≥1.14.故每個(gè)月至少投放1.14萬(wàn)件,可以保證每個(gè)月都保證供應(yīng).
22.(1)按題意,得.
∴ 即 .
又
∴ 關(guān)于x的方程.
在(2,+∞)內(nèi)有二不等實(shí)根x=、.關(guān)于x的二次方程
在(2,+∞)內(nèi)有二異根、.
.
故 .
(2)令,則
.
∴ .
(3)∵ ,
∴
.
∵ , ∴ 當(dāng)(,4)時(shí),;當(dāng)(4,)是.
又在[,]上連接,
∴ 在[,4]上遞增,在[4,]上遞減.
故 .
∵ ,
∴ 0<
∴ ,矛盾.故0<M<1.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com