(1)求證:的遞增區(qū)間為[s.t].求|s-t|的取值范圍, 查看更多

 

題目列表(包括答案和解析)

若函數(shù)f(x)為奇函數(shù),當x≥0時,f(x)=2x2-4x(如圖).
(1)求函數(shù)f(x)的表達式,并補齊函數(shù)f(x)的圖象;
(2)用定義證明:函數(shù)y=f(x)在區(qū)間[1,+∞)上單調(diào)遞增.

查看答案和解析>>

已知函數(shù)f(x)=|x-a|,g(x)=x2+2ax+1(a為正常數(shù)),且函數(shù)f(x)與g(x)的圖象在y軸上的截距相等.
(1)求a的值;
(2)求函數(shù)f(x)+g(x)的單調(diào)遞增區(qū)間;
(3)若n為正整數(shù),證明:10f( n )•( 
45
 )g( n )<4

查看答案和解析>>

已知函數(shù)f(x)=aInx-ax,(a∈R).
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若a=-1,求證;f(x)≥f(1),且
In2
2
In3
3
In4
4
In2010
2010
1
2010

查看答案和解析>>

已知函數(shù)f(x)=ax3+
1
2
sinθx2-2x+c的圖象經(jīng)過點(1,
37
6
)
,且在區(qū)間(-2,1)上單調(diào)遞減,在[1,+∞)上單調(diào)遞增.
(1)證明sinθ=1;
(2)求f(x)的解析式;
(3)若對于任意的x1,x2∈[m,m+3](m≥0),不等式|f(x1)-f(x2)|≤
45
2
恒成立,試問:這樣的m是否存在,若存在,請求出m的范圍;若不存在,說明理由.

查看答案和解析>>

已知函數(shù)f(x)=kx,g(x)=
lnx
x

(1)求函數(shù)g(x)=
lnx
x
的單調(diào)遞增區(qū)間;
(2)若不等式f(x)≥g(x)在區(qū)間(0,+∞)上恒成立,求k的取值范圍;
(3)求證:
ln2
24
+
ln3
34
+…+
lnn
n4
1
2e

查看答案和解析>>

一.選擇題 1B  2B  3B   4C  5B  6A  7B   8D  9C  10C  11A  12B

二.填空題  13.3      14.      15.     16.

三.解答題

17.解:由已知      所以

所以.…… 4分

    解得.

所以   …… 8分

 于是 …… 10分

…… 12分

18.(Ⅰ)設{an}的公比為q,由a3=a1q2得    …… 2分

          (Ⅱ)…… 12分

19.解: (1)由知, …①        ∴…②…… 2分

恒成立,

恒成立, 故…… 4分

 將①式代入上式得:

, 即, 即,代入②得, …… 8分

(2) 解得:

, ∴不等式的解集為…… 12分

20、證(I)由a1=1,an+1=Sn(n=1,2,3,…),知a2=S1=3a1,, ,∴

又an+1=Sn+1-Sn(n=1,2,3,…),則Sn+1-Sn=Sn(n=1,2,3,…),∴nSn+1=2(n+1)Sn, (n=1,2,3,…).故數(shù)列{}是首項為1,公比為2的等比數(shù)列 …… 8分

證(II) 由(I)知,,于是Sn+1=4(n+1)?=4an(n)…… 12分

又a2=3S1=3,則S2=a1+a2=4=4a1,因此對于任意正整數(shù)n≥1都有Sn+1=4an

21. 解:(1). …… 2分

時, 時,, 因此的減區(qū)間是

 在區(qū)間上是減函數(shù)…… 5分

時, 時,, 因此的減區(qū)間是…… 7分

 在區(qū)間上是減函數(shù)

綜上,…… 8分

(2). 若

在區(qū)間上,     …… 12分

22.解:(1)由題意和導數(shù)的幾何意義得:

由(1)得c=-a-2c,代入a<b<c,再由a<0得

…… 6分

…… 10分

…… 14分

 

 


同步練習冊答案