查看更多

 

題目列表(包括答案和解析)

(本小題滿分14分)

已知函數(shù)。

(1)證明:

(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m    

(3)設數(shù)列滿足:,設,

若(2)中的滿足對任意不小于2的正整數(shù)恒成立,

試求的最大值。

查看答案和解析>>

(本小題滿分14分)已知,點軸上,點軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m    

(Ⅰ)當點軸上移動時,求動點的軌跡方程;

(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線,當,求直線的方程.

查看答案和解析>>

(本小題滿分14分)設函數(shù)

 (1)求函數(shù)的單調(diào)區(qū)間;

 (2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m    

 (3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。

查看答案和解析>>

(本小題滿分14分)

已知,其中是自然常數(shù),

(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m    

(2)求證:在(1)的條件下,;

(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

(本小題滿分14分)

設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。

(I)求數(shù)列的通項公式;

(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;

(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。

查看答案和解析>>

一. 單項選擇題

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

C

D

B

D

A

B

D

C

二.填空題

11、         12、25           13、         14、

15、29π    

三、解答題:

16、解:(1)

                =…………….4分

的最小正周期為           ……………5分

的對稱中心為      …………….6分

(2)   

 ……………..8分

 

      由     ……………10分   

                     ……………….12分

17、解:(1)五項指標檢測相當于5次獨立重復試驗,當有二項及二項以上不合格時,該批食品不能出廠,故不能出廠的概率為:

        ……………………………….4分

(2)若須五項全部檢測完畢,才能確定能否出廠,則相當于前四項檢測中恰有一項不合格的情形,故所求概率為:

   …………………………………..8分

        (3)由(1)知該批食品能出廠的概率為0.74不能出廠的概率為0.26

          故該廠生產(chǎn)一批食品獲利的分布列為

10000

-5000

0.74

0.26

                                                      ….………….10分

獲利的期望為 …………..12分

18、解:(1)由已知

   …………2分

    ∴             ……4分

即所求曲線方程是:                           …………6分

(2)由(1)求得點M(0,1)。顯然直線l與x軸不垂直。

故可設直線l的方程為y=kx+1 ,設M, N      …………8分

  消去y得:  解得  

解得:k=±1  ………………11分                             …………12分

∴所求直線的方程為                …………14分

19, 解:解法一:(1)∵BF⊥平面ACE。  ∴BF⊥AF

∵二面角D―AB―E為直二面角。且CB⊥AB。

∴CB⊥平面ABE   ∴CB⊥AE   ∴AE⊥平面BCE           ……………4分

(2)連結BD交AC交于G,連結FG

∵正方形ABCD邊長為2!郆G⊥AC  BG=

∵BF⊥平面ACE。  由三垂線定理的逆定理得

FG⊥AC。  ∴∠BGF是二面B―AC―E的平面角              …………7分

由(1)和AE⊥平面BCE

又∵AE=EB

∴在等腰直角三角形AEB中,BE=

又∵Rt△BCE中,

  ∴Rt△BFG中

∴二面角B―AC―E的正弦值等于                        ……………10分

(3)過點E作ED⊥AB交AB于點O,  OE=1

∵二面角D―AB―E為直二面角    ∴EO⊥平面ABCD

設點D到平面ACE的距離為h。   ∵VD-ACE=VE-ACD

即點D到平面ACE的距離為                          ………………14分

 

20、解:(1)由 有唯一解

  

                                 …………4分

(2)由                 …………6分

  

數(shù)列 是以首項為,公差為的等差數(shù)列          …………8 分

                 ………10分

(3)由       …………12分

=

              

              

                                              …………14分

21、解:2.解:(Ⅰ)由條件得矩陣

它的特征值為,對應的特征向量為

(Ⅱ),橢圓的作用下的新曲線的方程為.(7分)

3.(坐標系與參數(shù)方程)求直線)被曲線所截的弦長,將方程分別化為普通方程:

,………(4分)

……(7分)

 

 

 

 

 


同步練習冊答案